

 P.O. Box 2808
 Corvallis, OR 97330

 Ofc.: (541) 752-7671
 Mobile: (541) 829-0811

 E-mail:
 brophyonline@gmail.com

 Website:
 www.GreenPointConsulting.com

December 1, 2014

Dana Hicks Oregon Department of State Lands 775 Summer Street N.E. Department of State Lands Salem, OR 97301

SUBJECT: 2014 Monitoring Report for Tamara Quays Project

Dear Dana:

Enclosed you will find the Year 5 (2014) monitoring report for the Tamara Quays tidal wetland restoration project. Our role in this project is to monitor plant community composition and plant community extent (vegetation mapping); to monitor soils, and to analyze and interpret hydrology data collected by USFS staff.

This year's report addresses performance standard 1 (wetland delineation "light"), and vegetation performance standards (standards 7.1 through 7.10). Documents provided directly to the Department of State Lands by the U.S. Forest Service, Siuslaw National Forest address the other currently applicable performance criteria. Under separate cover, we have also provided a functions and values assessment of the site using the ORWAP method.

Based on our monitoring this year, the project is currently meeting 9 out of the 10 applicable vegetation performance standards. In our professional judgment, the failure to meet Performance Standard 7.3 (>30% cover of native shrubs in the shrub zone) does not indicate any structural or functional problems with the project. Shrub and tree cover in the sample area has increased from 1% in 2010 to 5% in 2012 to 16% in 2014, and volunteer native shrubs and trees have become established. Native vegetation is establishing well throughout the site, the site has free tidal exchange, and natural processes are in place to re-establish tidal wetland functions.

This report also includes results of other monitoring performed at the site. Although these results are not required for Year 5 reporting, we include them to inform project partners on the progress of the overall effectiveness monitoring effort.

Please refer to the report for details on our findings and recommendations. If you have any questions, please contact me at (541) 752-7671 or by email at brophyonline@gmail.com.

Sincerely,

Lama D. Brophy

Laura Brophy Principal

[this page deliberately left blank]

2014 Monitoring Report: Tamara Quays Tidal Wetland Restoration

Tamara Quays restoration site: Rowdy Creek channel below former Kingfisher Lake, 7/1/14. Photo by L. Brophy.

December 1, 2014

Prepared by: Laura Brophy ^{1,2} Laura Brown ²

¹ Green Point Consulting, Corvallis, Oregon
 ² Estuary Technical Group, Institute for Applied Ecology, Corvallis, Oregon

Prepared for: Salmon-Drift Creek Watershed Council Neotsu, Oregon

P.O. Box 2808, Corvallis, OR 97339 Phone: (541) 752-7671 E-mail: <u>brophyonline@gmail.com</u>

Table of contents

1. Mitigation Monitoring Report Cover Sheet	5
2. Supporting Information	9
Background	9
Reporting schedule	9
Methods	10
3. Summary Data: Monitoring Results	14
Tidal inundation regime (hydrology)	14
Elevation	15
Vegetation composition in transects	15
Performance standards	15
Plant community composition	16
Graded areas (tidal marsh restoration area)	23
Shrub zone	25
Vegetation mapping	27
Soils	29
Water quality: salinity and temperature	29
4. Maps – see Appendix 4	30
5. Conclusions and recommendations	30
Appendix 1. Effectiveness Monitoring Scope of Work	31
Appendix 2. Tamara Quays Project Goals and Objectives	35
Appendix 3. References	38
Appendix 4. Maps (see following pages)	41
Appendix 5. Vegetation summary tables, DSL Routine Monitoring Protocol	51

1. Mitigation Monitoring Report Cover Sheet Oregon Department of State Lands

Block 1: Report Information

DSL Permit Number: 40400-GA	COE Permit Number: NWP-2007-01023	Permittee: USFS-Siuslaw NF
County: Lincoln	Report Date: Dec. 1, 2014	Monitoring Year: 5
Date Removal-Fill Activity Complete	ed: September 2009	
Date mitigation was completed:	Grading: September 2009	Planting: Winter 2010
Report submitted by: Laura Brophy	, Green Point Consulting, 541-752-7671	

Block 2: Monitoring Report Purpose

This monitoring report is for monitoring a project that includes: (check all that apply):

Compensatory **freshwater** wetland mitigation for permanent wetland impacts.

Compensatory **estuarine** wetland mitigation for permanent wetland impacts.

Only non-wetland compensatory mitigation.

Only mitigation for temporary impacts that had a monitoring requirement.

Voluntary wetland enhancement, creation or restoration (General authorization or individual permit) not funded with money from our wetland mitigation revolving fund.

⊠ Voluntary wetland enhancement, creation or restoration (General authorization or individual permit) funded with money from **our wetland mitigation revolving fund**.

Mitigation Bank Report

Other:

Block 3: Results

	Success Criteria	Met? (Y/N)	Comments/Reason for failure*1
1.	Re-establish wetland hydrology on approximately 6 acres of filled wetland consisting of the filled trailer park area to the NE of "Kingfisher Lake", and the dike. Criterion for success is for final elevations in all wetland removal/fill areas to be equal to the elevations on the grading plan in the approved pre- implementation report.	Ŷ	Although our scope does not include measurements to evaluate this criterion, according to USFS "as-built" survey data, this criterion has been met.
2.	Restore tidal influence to the existing wetland (~6 acres). Criterion for success is for tidal inundation to be within tolerable limits of height, duration and frequency at established channel cross- sections. Tolerable limits will be described in the approved Pre- Implementation Report.	Y	Assessment of tidal hydrology conducted in 2011 showed full tidal reconnection (see 2011 report). Field observations in 2014 indicated the site is still fully connected to tidal influence; no barriers to tidal flow were observed.
3.	Re-establish native vegetation at the project site. Criterion for success is for invasive species control and native vegetation planting to be implemented as approved in the Pre-Implementation Report.	N	One of the 10 applicable vegetation performance standards was not met in 2014, but this does not indicate any problems with the project; no remedial action is recommended. The other 9 standards were met.

* Success criteria are excerpted from the Tamara Quays Grant Agreement provided by Dana Hicks on June 13, 2010. Performance Standards (next page) are from the Tamara Quays Mitigation Plan dated January 28, 2010. The Mitigation Plan does not contain Success Criteria.

Remedial work recommended? Final Monitoring Report?

/es	No
/es	No

X X

1	See	report	for	detailed	information

Form Continued on Page 2

Block 4: Adaptive Management Performance Standards. This report addresses Performance Standards 1 and Standards 7.1 through 7.10 (following pages). Current year requirements are highlighted and underlined.

	Performance Standards	Met? (Y/N)	Comments/Reason for failure ²
1.	By year 5, a delineation "lite" will show that areas formerly occupied by dikes, borrow channels, and fill areas meet, or are likely to meet criteria for wetland vegetation and hydrology. If hydric soil field indicators are not present, but hydrology and vegetation indicators are positive, the plot may still be called wetland.	Y	The whole tidal restoration site (14. 83 ac) met jurisdictional wetland criteria. An additional area of 0.56 ac above below the defined limit of tidal wetland hydrology (the biennial inundation elevation, 10.44 ft) met the wetland vegetation criterion. See Appendix 7 (Wetland delineation light) for details.
2.	Elevations, as demonstrated in the as-built, are as outlined in the grading plan, or are graded to follow the historic marsh surface where apparent and noted.	Y	This criterion will be addressed by USFS; the USFS as-built survey (Map 8, Appendix 4) shows that this criterion has been met.
3.	There is a free exchange of tides, creating a tidal inundation regime similar to that of the reference site (after adjusting for relative elevations) as determined by data collected for at least one year using the existing tide gauge locations (one in reference marsh, one in project area).	Y	Assessment of tidal hydrology conducted in 2011 showed full tidal reconnection (see 2011 report). Field observations in 2014 indicate this is still the case; no barriers to tidal flow were observed.
4.1	The as-built and/or photo docu- mentation will demonstrate that grading allows hillside drainages to flow into the project area.	Y	See USFS as-built survey (Map 7, Appendix 4)
4.2	In years 2, 4, 6, 8, and 9, visual inspection and photo or video documentation will show that surface water flowing from hillside drainages is entering the project area.	N/A	This criterion will be addressed by USFS.
5.	In years 2, 4, 6, 8, and 9, visual estimates and photo or video documentation taken during a mean high tide or higher will demonstrate that at least 75% of surface water on the site is connected to the stream channel rather than isolated in pools.	N/A	This criterion will be addressed by USFS.

² See report for detailed information

6.	In years 2, 4, 6, 8, and 9, visual estimates and photo or video documentation taken during a mean high tide or higher will demonstrate that at least 20 pieces of wood greater than 16" diameter are in contact with the water during mean high tide or higher. <u>In shrub-dominated habitats the</u> <u>cover of native herbaceous species in</u> <u>the understory is</u> at least 40% by	N/A Y	This criterion will be addressed by USFS. Native herbaceous cover in the shrub- dominated habitat (Transect 5) was 67% in 2014, up from 53% in 2012.
	year 1; at least 50% by year 3; <mark>and at</mark> <u>least 60% by year 5.</u>		
7.2	In shrub-dominated habitats the absolute cover of invasive herbaceous species, except for Phalaris arundinacea (reed canary grass), is no more than 10%. The absolute cover by P. arundinacea is no more than 40% by year 1; 30% by year 3; and 20% by year 5.	Y	Cover of invasive herbaceous species, excluding <i>P. arundinacea,</i> in Transect 5 was 2.8%. Cover of <i>P. arundinacea</i> in Transect 5 was 1.6% in 2014, up slightly from 0.05% in 2012.
7.3	In shrub-dominated habitats, the cover of native shrubs is at least 10% by year 3 and <u>30% by year 5.</u> Native species volunteering on the site may be included, dead plants do not count.	Ν	Native shrub cover was 16.4% in 2014, up from 5% in 2012. Although native shrub density declined in 2014, the remaining density is probably adequate to achieve 30% cover within a few more years.
7.4	<u>In shrub-dominated habitats the</u> <u>cover of invasive shrub or tree</u> <u>species is no more than 10% in all</u> <u>monitoring years</u> .	Y	No invasive shrub or tree species are present in shrub-dominated habitats (Transect 5).
7.5	In shrub-dominated habitats, there are at least 3 different native species in all habitat types by year 5. To gualify, a species will have at least 5% average cover in the elevation class, and occur in at least 10% of the plots sampled.	Y	In Transect 5, there are 3 native species that have at least 5% average cover and 10% occurrence in plots sampled. Those species are <i>Salix sitchensis</i> (5.8% average cover, present in 100% of shrub plots), <i>Juncus effusus</i> (66.4% average cover, present in 100% of herbaceous plots) and <i>Salix hookeriana</i> (10.0% average cover, present in 100% of shrub plots).
7.6	In tidal areas, cover by invasive species relative to the total vegetation (not counting bare ground) is no more than 50% by year 1, 40% by year 3, <u>and 30% by</u> year 5.	Y	Cover of invasive species, including <i>P. arundinacea</i> , averaged 22% in 2014, down from 27% in 2012. (This standard is applied to emergent tidal marsh.)
7.7	In the tidal area, at least three of the species documented in the reference marsh occur in the project area by year 5.	Y	Four of the species documented in the reference marsh occurred in the project area, including <i>Carex lyngbyei</i> , <i>Deschampsia</i> <i>cespitosa</i> , <i>Juncus balticus</i> and <i>Potentilla</i> <i>anserina</i> .
7.8	In the tidal area, cover by native species is progressing toward reference conditions, currently measured at 86%, over the monitoring period.	Y	Cover by native species averaged 54% in 2014, up from 35% in 2012. (This standard is applied to emergent tidal marsh).

7.9	I <u>n the tidal areas, total plant cover is</u>	Y	Total plant cover averaged 96% in 2014, up
	<u>progressing toward reference</u>		from 84% in 2012. (This standard is applied to
	<u>conditions, currently measured at</u>		emergent tidal marsh).
	<u>95.7%, over the monitoring period.</u>		, , , , , , , , , , , , , , , , , , ,
7.10	<u>The moisture index total for all strata</u>	Y	In 2014, the moisture index (prevalence index)
	<u>is <3.0 in all habitat types over the</u>		2.03 for emergent marsh and 2.45 in shrub-
	<u>monitoring period.</u>		dominated habitat.

2. Supporting Information

Background

This report describes results of effectiveness monitoring by our firm (Green Point Consulting) at the Tamara Quays tidal wetland restoration site. The site is located along the lower reaches of Rowdy Creek, where the creek enters the Salmon River estuary in Lincoln County, Oregon (Map 1, Appendix 4). Restoration was completed in fall 2009; the as-built survey (Map 7, Appendix 4) shows the final site elevations.

We began monitoring this site in 2007, and will continue our effectiveness monitoring work for 10 years after restoration (through 2019). Specifically, we are monitoring vegetation and soils, assisting USFS with water level data collection, and providing analysis and interpretation of tidal hydrology. The complete scope of work for our effectiveness monitoring at the site is provided in Appendix 1 of this report.

Reporting schedule

Table 1 shows the reporting schedule for monitoring at Tamara Quays, excerpted from the Tamara Quays Mitigation Plan (OR DSL 2010a). In addition, our scope of work for effectiveness monitoring (Appendix 1) includes a brief annual report describing "work completed, a summary of results, and problems or challenges encountered or anticipated." These requirements are met in this report.

Report	Requirements	Schedule (estimated)
As-Built Elevations	Final surveyed grades and a brief	Estimated June 2010
	narrative describing any changes from	
	the approved plan	
Year 1 report	Vegetation Monitoring	December 1, 2010
Year 2 report	Tidal inundation regime, walk-through	December 1, 2011
	survey and photo points	
Year 3 report	Vegetation Monitoring	December 1, 2012
Year 4 report	Walk-through survey and photo points	December 1, 2013
Year 5 report	Vegetation Monitoring	December 1, 2014
	Delineation "light" ²	
	Functions and Values Assessment ²	
Year 6 report	Walk-through survey and photo points	December 1, 2015
Year 7 report	Vegetation Monitoring	December 1, 2016
Year 8 report	Walk-through survey and photo points	December 1, 2017
Year 9 report	Walk-through survey and photo points	December 1, 2018
Year 10 report	Vegetation Monitoring	December 1, 2019

Table 1. Tamara Quays Reporting Schedule¹

¹Monitoring to demonstrate achievement of performance standards will take place for a minimum of five years. If the fifth year monitoring report indicates that the project is meeting its performance standards, the IRT may decide to reduce or waive the monitoring outlined in favor of that required by the long-term management plan. ²These requirements may be fulfilled any time during the monitoring period, but will be submitted no later than December 1, 2014. Delineation "light" will be conducted according to the DSL's Removal Fill Guidelines.

Methods

Summary

Monitoring methods and timeline are summarized in Tables 2 and 3. Monitoring in 2014 was conducted using the same methods as in 2010 and 2012. These methods are described in the Tamara Quays Mitigation Plan, with two minor exceptions:

- In herbaceous transects (T2, T3, T4, T6, and T7), instead of 10 plots per transect, we monitored 15 plots per transect. This decision was based on the use of DSL's Sample Size Calculator for plots monitored in 2007. In the single transect in shrub-dominated habitat (Transect 5), we counted stems and estimated percent cover of shrubs and trees in five randomly placed shrub/tree plots (15ft by 15ft each), and estimated percent cover of herbaceous species in 10 herbaceous plots of 1 sq m each, nested within the randomly placed shrub/tree plots.
- Elevation measurements of transects (study plots) and instrumentation were originally scheduled for 2014. However, these measurements were completed ahead of schedule (in 2011) and were not needed again in 2014, since no instrumentation was present in

2014 and elevations of study transects are not expected to have changed since 2011 (grading was completed in 2010).

As described in the Effectiveness Monitoring Scope of Work (Appendix 1), monitoring at the Tamara Quays site follows regional and national standards, allowing exchange of data and "lessons learned" with the tidal wetland restoration community. Monitoring also meets guidelines and requirements established in the following documents:

- The Tamara Quays Mitigation Plan (OR DSL 2010a)
- The Tamara Quays Grant Agreement (OR DSL 2010b)
- Routine Monitoring Guidance for Vegetation issued by the Department of State Lands (OR DSL 2009)
- Oregon DSL's Removal-Fill Guidance (<u>http://www.oregon.gov/DSL/PERMITS/docs/cwm_rfg_feb2010.doc</u>),

Table 2 summarizes monitoring methods at Tamara Quays; Table 3 shows the monitoring timeline. Further details on the monitoring program are found in Appendix 1.

Indicator category	Monitored metric	Data collection method(s)
Hydrology	Surface water elevation	Automated level logger ("tide gauge")
Elevation	Elevation of study plots and instrumentation	Laser level, total station, or RTK-GPS
Vegetation	Plant community composition	Study plots located within elevation strata; visual estimate of percent cover within randomly located 1 sq m subplots; woody stem counts within randomly located 15 by 15 ft plots
Vegetation	Extent of plant communities	GIS mapping via heads-up digitization from orthorectified aerial photos provided by USFS
Soils	% organic matter, pH, electrical conductivity	Surface 30cm cores from sample plots; analysis at OSU Central Analytical Lab

Table 2. Tamara Quays: Monitoring methods summary

#	Monitored metric	2007	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
1	Tidal inundation regime	х	Х	Х	х								
2	Elevations of instrumentation and study plots*		х	x				х					
3	Vegetation composition in transects	Х		Х		Х		Х		Х			Х
4	Vegetation mapping		Х					Х					Х
5	Soil OM, pH, texture, EC	Х		Х									Х
6	Wetland delineation		Х					Х					
7	Functional assessment		Х					Х					

Table 3. Tamara Quays: Monitoring timeline (Green Point Consulting activities)

* Elevation survey of instrumentation and study plots, originally scheduled for 2014, was completed in 2011.

Sample Transects

Table 4 shows characteristics of the sample transects, where data on vegetation and soils were collected. Transects 1-3 were established prior to restoration on areas that were not graded. Transects 4-7 are located on the area that was graded in summer 2009, so no baseline data were collected prior to restoration. (For these transects, grading removed all vegetation and surface soil – i.e., fill material -- so baseline data would not have been meaningful.) However, the pre-restoration delineation report (Brophy 2009a) provides detailed information on conditions in the area of Transects 4-7 prior to restoration.

Soil surface elevations for transects TQ T2 through TQ T7 were measured by a USFS survey crew in 2010. Seven to ten points were measured along each transect; the results were averaged for the data shown in Table 4. For TQ T1, soil surface elevations were averaged from just two points at the north and south end posts; the elevations were obtained by our team using a laser level in 2009 (for TQ T1 N) and RTK-GPS equipment in September 2014 (for TQ T1S). Transect endpost coordinates (Table 5) were obtained from these same data sources.

Table 4. Tamara Quays: Transect descriptions (for locations, see Map 4, Appendix 4). Endpost coordinates are in meters, UTM Zone 10N, NAD83.

		Average elevation	Graded in	Years	
Transect	Location	(ft NAVD88)	2009?	monitored	Vegetation type
TQ T1	Reference marsh (outside dike)	8.35	Ν	2007; 2010-2019*	Emergent tidal marsh
TQ T2	Old marsh surface, adjacent to Kingfisher Lake	7.58	Ν	2007, 2009, 2010-2019	Emergent tidal marsh
TQ T3	Old marsh surface, W of bypass canal levee	7.69	Ν	2009, 2010-2019	Emergent tidal marsh
TQ T4	Tidal marsh restoration area	8.01	Y	2010-2019	Emergent tidal marsh
TQ T5	Shrub zone, east side of site	11.35	Y	2010-2019	Willows
TQ T6	Tidal marsh restoration area	7.46	Y	2010-2019	Emergent tidal marsh
TQ T7	Tidal marsh restoration area	7.81	Y	2010-2019	Emergent tidal marsh

* Reference Transect 1 was monitored in 2007 and 2014 but not in 2010 or 2012. This transect will also be monitored in Year 10 (2019).

Table 5. Tamara Quays: Transect endpost coordinates (for locations, see Map 4, Appendix 4).
Coordinates are in meters, UTM Zone 10N, NAD83.

Transect	Endpost position	Northing (m)	Easting (m)
TQ T1	north	4986072.02	422769.49
TQ T1	south	4985983.37	422790.02
TQ T2	north	4985874.89	422761.51
TQ T2	south	4985820.60	422805.12
TQ T3	north	4985831.28	422703.10
TQ T3	south	4985803.09	422756.74
TQ T4	east	4985827.97	422905.07
TQ T4	west	4985864.70	422829.14
TQ T5	north	4985767.76	423032.84
TQ T5	south	4985719.10	423064.34
TQ T6	north	4985714.24	423033.87
TQ T6	south	4985655.83	423047.01
TQ T7	north	4985787.05	422851.17
TQ T7	south	4985761.97	422893.62

Vegetation mapping

Our effectiveness monitoring program at Tamara Quays includes mapping of wetland types (Cowardin classes) at the restoration site at baseline (2009), and mapping of plant communities in Years 5 and 10 (2014 and 2019). In 2014, we mapped vegetation using aerial photography and field ground-truthing. High-resolution digital aerial photographs flown in 2012 were provided by USFS (Barb Ellis-Sugai, personal communication). We traversed the project site on foot to correlate field vegetation with patterns in the aerial photographs. Map units were delineated in the field on printouts of the aerials. Digital vegetation maps were created in ArcGIS 10.2 by georeferencing the field maps and tracing the map unit boundaries into the GIS at a consistent onscreen scale of 1:1000. For the ungraded areas, a digital elevation model (DEM) built from LIDAR acquired in 2009 by the Oregon LIDAR Consortium (Watershed Sciences 2009) was used to assist boundary placement, since elevation (and the resulting tidal inundation regime) are controlling factors in plant community development. (The LIDAR was flown before grading, so it could not be used for the graded areas.) The polygon size threshold was about 0.02 A (about 30 by 30 ft). The vegetation map was saved as a shapefile (TQ_2014_VegMap_FINAL_20141130_LSB.shp).

Following the National Vegetation Classification Standard (The Nature Conservancy 1994), we used a two-level hierarchical vegetation classification scheme. Plant associations represented fine gradations of dominant species; these were finely divided to reflect small differences in community composition. Plant association names reflect the relative dominance of species. For example, in the "soft rush - Baltic rush - reed canarygrass" association, soft rush has higher cover than reed canarygrass, whereas the opposite is true for the "reed canarygrass - soft rush - Baltic rush - creeping spikerush" association. Alliances, the coarser level, were described by a single major dominant species that characterized a larger area. This two-level classification allows flexibility in tracking future vegetation change.

We also characterized plant communities as native-dominated or non-native-dominated, based on the alliance level classification. Native-species alliances such as Baltic rush and soft rush were considered native-dominated, and non-native alliances such as tall fescue were considered non-native-dominated. The percent cover of native species versus non-native species varied within these alliances.

3. Summary Data: Monitoring Results

Tidal inundation regime (hydrology)

As described in the 2011 monitoring report (Brophy 2011), tidal hydrology was successfully restored at Tamara Quays. Project performance standards require a free exchange of tides at the Tamara Quays site, with a tidal inundation regime in the restoration area that is similar to that in the reference area (after adjusting for elevation). Results from tidal hydrology

monitoring during 2009-2011 indicate that this standard was achieved; high tide levels at the restoration site and reference site were nearly identical during the entire monitoring period. Field observations in 2014 indicate this is still the case; no barriers to tidal flow were observed. Therefore, no further information is provided regarding this performance standard.

Tidal datums such as Mean Higher High Water (MHHW) and Highest Measured Tide (HMT) provide useful benchmarks for understanding of site development. Although our scope of work does not include calculation of tidal datums at Tamara Quays, others have calculated tidal datums for the Salmon River estuary and nearby areas (see Appendix 6).

Elevation

Project performance standards specify that "Elevations, as demonstrated in the as-built, are as outlined in the grading plan, or are graded to follow the historic marsh surface where apparent and noted." USFS provides information to DSL for evaluation of this standard. However, as described in the 2010 monitoring report (Brophy 2010a), the as-built survey provided to us by USFS shows that these standards have been met; elevations at the Tamara Quays site have been successfully restored as outlined in the grading plan. Therefore, no further information is provided regarding this performance standard.

Vegetation composition in transects

Performance standards

The vegetation performance standards for the Tamara Quays site (OR DSL 2010a) are based on plant community composition. As shown on the cover sheet for this report and in Tables 6 and 7 below, nine of the ten performance standards that are applicable in 2014 were met. In herbaceous and shrub habitats, native plant cover is high, cover of invasives is below specified levels; and the prevalence index is low, indicating predominance of hydrophytic (wetland) species.

The only standard that was not met was Performance Standard 7.3 (Table 6), which calls for more than 30% cover of native shrubs within the shrub-dominated habitats (Transect 5). In our professional judgment, the failure to meet this standard does not indicate any structural or functional problems with the project, and no remedial action is recommended. Although shrub density decreased in 2014 (Table 14), shrub cover continued to increase, more than doubling in 2014 (16.4%) compared to 2012 (6.5%) (Table 13). Although this is still below the standard of 30% shrub cover by year 5, the steady increase in cover suggests the willows are now well established in this zone, and will continue to increase over the next few years. It is not uncommon for willows to take more than 5 years to develop substantial cover, based on our experience at similar sites (Brophy 2005, Brophy 2012a).

Table 6. Tamara Quays: Summary of vegetation monitoring and performance standards for shrub-dominated habitats, 2010-2014.

Parameter	(he	tive co rbaceo ndard	ous)	ex P aru	sive co ccludir halari ndina dard 2	ng is cea	P aru	over o halari ndina dard	is cea	9	r of n shrubs ndard	5	Cover of invasive trees and shrubs (standard 7.4)		invasive trees and shrubs			evalen Index Indard			
Performance Standard for Year 5		>60%			<10%			20% b Year 5	'		0% by Year 5	•		<10%		<10%		At least 3 species by Year 5		<3.0	
Meeting Standard?			YES			YES			YES			NO		YES		YES			YES		
	2010	2012	2014	2010	2012	2014	2010	2012	2014	2010	2012	2014	2010 2012 2014		2014	2010	2012	2014			
TQT5	5	53	67	2	2	3	0	0	2	1	5	16	0	0	0	3	2.65	2.05	2.24		

Table 7. Tamara Quays: Summary of vegetation monitoring and performance standards for herbaceous (tidal marsh) areas, 2010-2014.

Parameter	Inva	Invasive Cover		Native Diversity	Native Cover		Total Plant Cover			Prevalence Index				
Performance Standard for Year 5		% by Ye andard 2		At least 3 species also found in reference marsh (standard 7.7)	Progressing toward 86% (standard 7.8)				0	essing to % (stan 7.9)		(sta	<3.0 ndard 7	.10)
	2010	2012	2014	2014	2010	2012	2014	2010	2012	2014	2010	2012	2014	
Meeting Standard?			YES	YES			YES			YES			YES	
TQT2	6	36	24	3	25	17	7	74	99	99	1.89	2.45	2.68	
TQT3	19	71	65	2	4	14	35	44	90	100	1.95	1.83	1.72	
TQT4	0	0	3	3	1	24	69	2	60	88	1.70	2.26	1.94	
TQT6	0	19	4	4	3	64	79	4	87	94	1.92	1.68	1.74	
TQT7	2	7	13	2	10	57	80	17	85	99	1.92	2.15	2.08	
Average	5	27	22	4 (total)	9	35	54	28	84	96	1.88	2.07	2.03	

Plant community composition

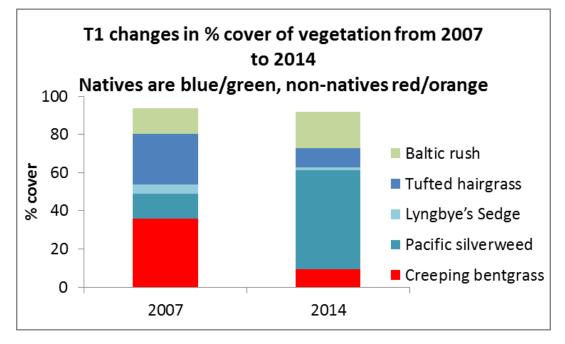
In this section, we provide details on plant community composition – the data used to evaluate the vegetation performance standards described above. Table 8 shows scientific names, common names, and native/non-native status for the wetland plants commonly found at Tamara Quays. These are the species shown in the tables and figures below.

Table 8. Scientific names, common names, and native/non-native status for wetland plantspecies commonly found at Tamara Quays.

Scientific name	Common name	Native status*
Achillea millefolium	common yarrow	N
Agrostis stolonifera	creeping bentgrass	NN
Alnus rubra	red alder	N
Anthoxanthum odoratum	sweet vernal grass	I
Carex lyngbyei	Lyngbye's sedge	N
Deschampsia cespitosa	tufted hairgrass	Ν
Eleocharis palustris	common spikerush	N
Epilobium ciliatum	fringed willowherb	Ν
Festuca rubra	red fescue	NN
Galium trifidum	three-petal bedstraw	N
Glaux maritima	sea milkwort	N
Holcus lanatus	velvet grass	I
Hordeum brachyantherum	meadow barley	N
Juncus balticus	Baltic rush	N
Juncus effusus**	soft rush	Ν
Lathyrus palustris	marsh vetchling	N
Lotus uliginosus	greater birdsfoot trefoil	NN
Oenanthe sarmentosa	water parsley	Ν
Phalaris arundinacea	reed canarygrass	I
Poa sp.	bluegrass	Unk
Potentilla anserina	Pacific silverweed	N
Salix hookeriana	Hooker willow	N
Salix sitchensis	Sitka willow	N
Schedonorus arundinaceus	tall fescue	NN
Symphyotrichum subspicatum	Douglas' aster	N
Triglochin maritima	seaside arrowgrass	N
Typha latifolia	common cattail	N

* N = native, NN = non-native, I = invasive. Invasive species are defined by the Oregon Department of State Lands as those on the Oregon Department of Agriculture noxious weeds lists. They may be native or non-native. ** Both native and non-native subspecies of soft rush exist on the Oregon coast (see **Soft rush: Native and nonnative subspecies** below). Due to time and budget limitations, we were not able to determine native vs. nonnative status for the soft rush at Tamara Quays.

Reference marsh


Due to time and budget limitations, the reference transect in the undiked marsh adjacent to the Tamara Quays site (Transect 1, Map 4) was only monitored in 2007 and 2014, but not monitored in 2010 or 2012. Table 9 and Figure 1 show percent cover for all species in Transect 1 that had cover greater than 5% in any monitoring year; Table 9 also shows total vegetation

cover and bare ground. Percent cover values shown are the average of ten 1 sq m plots per transect in 2007 and 15 plots the same size in 2014.

	% cover			
Common name	2007	2014		
Creeping bentgrass	36.0	9.27		
Tufted hairgrass	26.6	10.4		
Baltic rush	13.2	18.9		
Pacific silverweed	12.8	51.8		
Lyngbye's sedge	5.0	1.47		
total vegetation cover	96.5	95.7		
bare ground	3.5	4.3		

Table 9. Tamara Quays: Changes in plant community composition and bare ground, Transect 1, 2007-2014 (species over 5% in any monitoring year)

Figure 1. Tamara Quays: Changes in plant community composition, Transect 1, 2007-2014 (species over 5% in any monitoring year)

Tufted hairgrass was the dominant native species in 2007 with 26.6% cover, but dominance shifted to Pacific silverweed in 2014 (51.8%). In our experience, year-to-year changes in cover of Pacific silverweed in Oregon high marsh may be due to interannual variations in precipitation and temperature, since this species is very responsive to dessication, senescing early when conditions are hot and dry. By contrast, in favorable years, this species produces a very dense layer of foliage, which can overtop lower-growing species such as creeping bentgrass. Such overtopping may explain the decrease in cover of the non-native species creeping bentgrass (from 36% in 2007 to 9.3% cover in 2014). The reduction in tufted hairgrass cover is less easily

explained; future monitoring will reveal whether this is a trend or simply interannual variability. The overall variation observed at this reference transect between 2007 and 2014 is not unusual compared to other projects (Brophy and Christy 2009, Brophy *et al.* 2014).

Restoration site: Old marsh surface

Our monitoring includes two transects on the "old marsh surface" within the Tamara Quays restoration area (Transects 2 and 3). These are areas of former tidal marsh that were not graded, so they allow us to track vegetation change as freshwater wetland plant communities are replaced by brackish-tolerant tidal marsh communities. These transects also offer a unique opportunity to observe differences in plant community development on the original marsh soils (which were never filled), *versus* the filled, graded areas found on the remainder of the restoration site. The history of land use and hydrologic modification at Transects 2 and 3 is described in the 2010 report (Brophy 2010a).

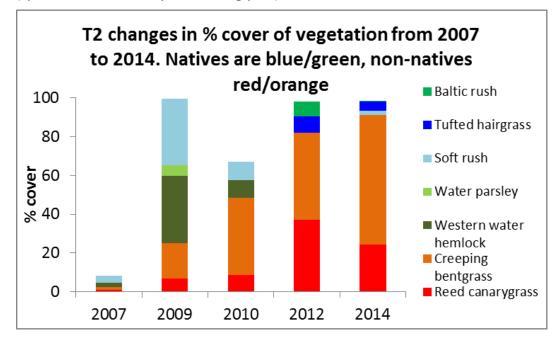

Transect 2

Table 10 and Figure 2 show percent cover for all species in Transect 2 that had cover greater than 5% in any monitoring year; Table 10 also shows total vegetation cover and bare ground. Percent cover values shown are the average of ten 1 sq m plots per transect in 2007 and 2009, and 15 plots the same size in 2010, 2012 and 2014.

Table 10. Tamara Quays: Changes in plant community composition and bare ground,
Transect 2, 2007-2014 (species over 5% in any monitoring year)

			% cover		
Common name	2007	2009	2010	2012	2014
Creeping bentgrass	1.7	18.1	39.5	45.1	66.9
Western water hemlock	1.9	34.6	9.2	0.0	0.0
Tufted hairgrass	0.0	0.0	0.0	8.3	4.7
Baltic rush	0.0	0.0	0.0	7.7	0.3
Soft rush	3.7	34.0	9.7	0.0	2.3
Water parsley	0.0	5.8	0.0	0.0	0.0
Reed canarygrass	0.9	6.9	8.8	37.0	24.3
total vegetation cover	11.1	97.5	73.6	99.1	98.7
bare ground	88.9	2.5	31.5	1.7	1.3

Figure 2. Tamara Quays: Changes in plant community composition, Transect 2, 2007-2014 (species over 5% in any monitoring year)

To review previous years' results (as described in Brophy 2010a and 2012b), water levels within Kingfisher Lake had a strong influence on vegetation at Transect 2 during 2007-2009. In 2007, Transect 2 had a high proportion of bare ground; dead remnants of previous vegetation (cattails) were still visible, apparently killed by the sequence of flooding and drainage of Kingfisher Lake that had occurred in the previous few years. By 2009 (still prior to restoration), stabilized water levels in the lake had allowed a freshwater plant community to develop at Transect 2, dominated by soft rush and Western water hemlock. In 2010, after nine months of tidal inundation by brackish water, this freshwater plant community was rapidly giving way to brackish-tolerant species, particularly creeping bentgrass. Creeping bentgrass is a typical early dominant in brackish tidal wetland restoration sites (Brophy 2010b, 2009b, 2007b, 2004, 2002; Brophy and Christy 2009; Cornu and Sadro 2002); this species is also present in the reference marsh (Transect 1). By 2012, soft rush had completely disappeared from the Transect 2 plots with two native species (tufted hairgrass and Baltic rush) becoming newly established, though not widespread. Non-native creeping bentgrass increased from 2010 to 2012, as did the invasive reed canarygrass.

In 2014, non-native species continue to dominate this transect. Creeping bentgrass has become pervasively dominant (67% in 2014 compared to 45% in 2012), and in 2014 was present in all 15 plots, compared to only 11 plots in 2012. Invasive reed canarygrass has decreased only slightly (24% cover in 2014, down from 37% cover in 2012), and was present in nearly as many plots as in 2012 (10 of 15 plots versus 11 of 15 plots in 2012). Two typical native brackish marsh species (tufted hairgrass and Baltic rush) both decreased in cover since 2012, from 8.3 to 4.7% for tufted hairgrass and 7.7 to 0.3% for Baltic rush. Soft rush increased from 0% in 2012 to 2.3%, but it only occurred in 1 of 15 plots.

Restoration of brackish flows at the site will likely continue to suppress the reed canarygrass in the long term. At a Yaquina tidal marsh restoration site with summer salinities around 5 to 8 PSU, reed canarygrass was strongly suppressed within 6 years after restoration (Brophy 2004; Cornu *et al.* 2011). June peak salinities at the upstream end of Tamara Quays (~20 PSU) were three times that of the Yaquina site. However, the elevation of the Yaquina site (about 4 to 5 ft NAVD88) is considerably lower than the 8ft marsh surface at Tamara Quays, so frequency of inundation by brackish water is much higher at the Yaquina site. Still, the prospects for long-term suppression of reed canarygrass by salinity at Tamara Quays appear reasonable.

By contrast, creeping bentgrass is very tolerant of brackish water, and its prominence in the reference transect (TQ T1) and other least-disturbed sites (e.g. Brophy *et al.* 2014, 2011; Brophy 2009b) suggests it could remain dominant in this area for some time. Seeding tufted hairgrass and other native brackish-tolerant graminoids in this area could help restore some diversity and suppress the creeping bentgrass.

Transect 3

In 2009, we added a second transect on the old marsh surface, west of the bypass canal levee (Transect 3). This transect was heavily dominated by reed canarygrass prior to restoration, and was not scheduled for grading, offering a chance to track effects of increased salinity on this common invasive species.

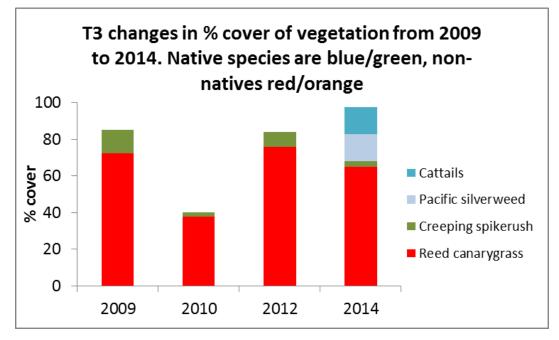

Table 11 and Figure 3 show percent cover for all species in Transect 3 that had cover greater than 5% in any monitoring year; Table 11 also shows total vegetation cover and bare ground. Percent cover values shown are the average of ten 1 sq m plots per transect in 2009, and 15 plots the same size in 2010, 2012 and 2014.

 Table 11. Tamara Quays: Changes in plant community composition and bare ground,

 Transect 3, 2009-2014 (species over 5% in any monitoring year)

	% cover				
Common name	2009	2010	2012	2014	
Creeping spikerush	13.0	2.4	8.0	3.3	
Reed canarygrass	72.2	37.5	75.7	64.7	
Pacific silverweed	0.0	0.0	0.0	14.7	
Common cattail	0.0	0.0	0.0	14.7	
total vegetation cover	92.8	44.3	89.6	100.0	
bare ground	16.4	58.9	10.5	0.0	

Figure 3. Tamara Quays: Changes in plant community composition, Transect 3, 2009-2014 (species over 5% in any monitoring year)

In 2014, T3 showed an increase in Pacific silverweed and common cattail since 2012 (0.0 to 14.7% for both species). Based on our field observations and those of others (Adamus 2005), both of these species are more tolerant of brackish conditions than reed canarygrass, which may explain their increase. Reed canarygrass cover decreased from 75.7% in 2012 to 64.7% in 2014, and also showed an overall decrease since 2009 (72.2% cover). In previous years, reed canarygrass cover fluctuated greatly (from 72% in 2009 to 38% in 2010, then back up to 76% in 2012). We believe the low value in 2010 may have been partly due to variation between observers. It can be challenging to distinguish standing dead material from senescent stems of reed canarygrass, particularly when salt stress causes chlorosis of living material.

The slightly decreased cover of reed canarygrass in 2014, along with the increase of brackishtolerant Pacific silverweed and common cattail, suggests that restored brackish water may be helping to reduce cover of this reed canarygrass at T3. Based on data from other sites, we expect the strongly brackish salinities at Tamara Quays to suppress reed canarygrass in the long term.

Graded areas (tidal marsh restoration area)

Transects 4, 6 and 7 are located within the graded tidal marsh restoration area. Because the 2009 grading removed surface soils (i.e., fill material) and all pre-existing vegetation, 2010 was the first year for monitoring at these transects. Table 12 and Figure 4 show percent cover for all species in Transect 4, 6 and 7 that had cover greater than 5% in any monitoring year; Table 12 also shows total vegetation cover and bare ground.

Table 12. Tamara Quays: Changes in plant community composition and bare ground, graded emergent transects (T4, T6, and T7), 2010-2014 (species over 5% in any transect in any monitoring year)

		% cover								
	T4,	Τ4,	Τ4,	Т6,	Т6,	Т6,	T7,	T7,	T7,	
Common name	2010	2012	2014	2010	2012	2014	2010	2012	2014	
Creeping bentgrass	0.5	36.0	15.6	0.2	2.1	11.6	1.9	18.7	2.2	
Creeping spikerush	0.2	4.1	13.9	0.2	27.1	26.5	0.6	0.0	2.0	
Lyngbye's sedge	0.0	0.0	14.1	0.0	0.0	2.9	0.0	0.0	0.0	
Baltic rush	0.0	10.7	24.3	0.0	15.1	12.3	0.2	39.7	15.5	
Toad rush	0.2	0.0	0.0	1.2	0.0	0.0	7.4	0.0	0.0	
Soft rush	0.0	3.4	9.8	0.0	8.7	27.5	0.0	12.4	56.7	
Tufted hairgrass	0.0	0.0	5.0	0.0	0.0	0.2	0.0	0.0	0.0	
Reed canarygrass	0.0	0.1	3.3	0.3	19.0	3.5	3.8	6.4	9.8	
Common cattail	0.0	0.1	0.0	0.0	4.3	6.7	0.0	4.7	0.2	
total vegetation cover	2.1	59.7	87.7	4.3	86.5	94.3	16.7	84.8	99.3	
bare ground/debris	98.9	41.0	12.7	96.7	13.6	5.7	84.9	15.3	0.7	

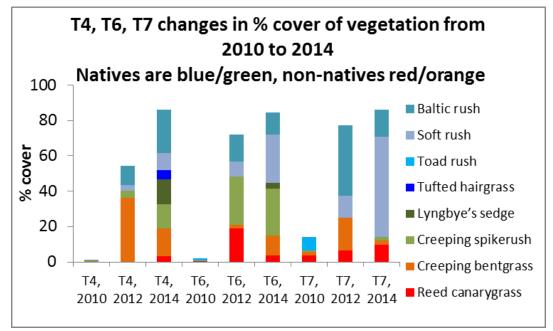


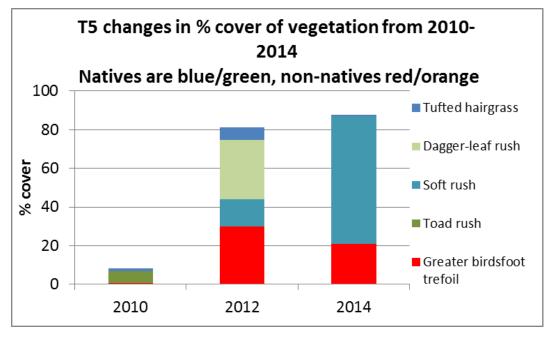
Figure 4. Tamara Quays: Changes in plant community composition, graded emergent transects (TQ T4, T6 and T7, 2010-2014 (species over 5% in any monitoring year)

In 2014, all of the graded transects (TQ T4, T6 and T7) continued to show increased plant cover (85 to 99%) and decreased bare ground relative to the graded condition in 2009 (Table 12). Soft rush was dominant at T6 and T7 (27.5% and 56.7% respectively, with creeping spikerush also dominant at T6 (26.5%). By contrast, at Transect 4, Baltic rush increased and became dominant from 2012 to 2014 (10.7% to 24.3% cover respectively). Other native tidal marsh species, including Lyngbye's sedge and tufted hairgrass, were present at these transects in 2014, indicating the introduction of typical native brackish marsh species to the site. However, these two native species are not yet widespread, found in less than 50% of the plots in Transects 4 and 6.

Though all graded transects had an overall decrease in non-native species cover from 2012 to 2014, Transect 4 and 7 showed a slight increase in reed canarygrass cover (0.1% in 2012 to 3.3% in 2014 for Transect 4, and 6.4% in 2012 to 9.8% in 2014 for Transect 7), while Transect 6 showed a slight increase in creeping bentgrass cover from 2012 to 2014 (2.1% to 11.6%)). While non-native species have increased in certain transects, they are still below the 30% threshold required to meet standard 7.6. Restoration of brackish flows at the site is likely to suppress the reed canarygrass in the long term, while creeping bentgrass is a typical early dominant in brackish tidal wetland restoration sites (Brophy 2010b, 2009b, 2007b, 2004, 2002; Brophy and Christy 2009; Cornu and Sadro 2002). Creeping bentgrass is also prominent in the reference marsh (Transect 1), so it may be present for many years to come.

Due to the grading in 2009, we expect vegetation at Transects 4, 6 and 7 to be dynamic for many years. Grading removes surface soils; therefore there are no pre-existing roots or buried seeds for rapid revegetation. In the case of an area dominated by reed canarygrass, removal of the root mat may be an advantage, but bare ground is always first colonized by opportunistic species. Many of these are non-native ephemerals that give way to longer-term dominants after several years (Cornu and Sadro 2002). The presence of a broad range of plant types shows the dynamic condition at these transects; species with over 5% cover in 2014 included native freshwater wetland plants (common cattail, soft rush), early colonizers (creeping spikerush, creeping bentgrass), the invasive reed canarygrass, and typical native tidal marsh dominants (Baltic rush, tufted hairgrass and Lyngbye's sedge).

Shrub zone


Transect 5 is located on the upper margin of the graded tidal marsh surface in the southeast part of the Tamara Quays restoration area, at an elevation of about 11 ft NAVD88. Table 13 shows percent cover for those herbaceous species that had more than 5% cover, and for all shrubs and trees (whether planted or volunteer). Table 14 shows stem counts for all shrubs and trees (whether planted or volunteer).

	% cover				
Common name	2010	2012	2014		
Herbaceous species					
Tufted hairgrass	1.3	6.5	0.5		
Toad rush	6.4	0.0	0.0		
Soft rush	0.0	14.0	66.4		
Dagger-leaf rush	0.0	30.6	0.0		
Greater birdsfoot trefoil	0.5	30.0	20.7		
Shrubs and trees					
Hooker willow	0.3	3.1	5.8		
Sitka willow	0.3	1.6	10.0		
Red alder	0.2	1.8	0.6		
Sitka spruce	0.03	0.0	0.0		
Total vegetation cover	13.0	84.8	100.0		
[bare ground]	85.3	16.1	0.0		

Table 13. Tamara Quays: Changes in plant community composition and bare ground, Transect 5, 2010-2014. For herbaceous species, species with more than 5% cover in any year are shown. Percent cover is shown for all shrub and tree species in the plots. Table 14. Tamara Quays: Changes in tree and shrub stem counts, Transect 5, 2010-2014. Stem counts are shown for all shrub and tree species in the plots.

	stems/A					
Common name	2010	2012	2014			
Hooker willow	1316.5	1548.8	890.6			
Sitka willow	1200.3	464.6	851.8			
Red alder	232.3	774.4	271.0			
Sitka spruce	77.4	0.0	0.0			
Total	2826.5	2787.8	2013.4			

Figure 5. Tamara Quays: Changes in species composition of the herbaceous stratum, Transect 5, 2010-2014 (species over 5% in any monitoring year)

At Transect 5 (as at Transects 4, 6, and 7), grading removed all pre-existing vegetation, therefore this transect had a high proportion of bare ground in 2010 (85%); but plant cover increased rapidly to about 84% in 2012, then to 100% cover in 2014 (Table 13). Shrub density (willows) decreased in 2014 (Table 14); quite a few of the planted willow stakes were no longer alive in 2014. However, shrub cover continued to increase, more than doubling in 2014 (16.4%) compared to 2012 (6.5%) (Table 13). Although this is still below the standard of 30% shrub cover by year 5, the steady increase in cover suggests the willows are now well established in this zone, and will continue to increase over the next few years. It is not uncommon for willows to take more than 5 years to develop substantial cover, based on our experience at similar sites (Brophy 2005, Brophy 2012a).

Herbaceous dominants at Transect 5 include one native (soft rush) and one non-native species (greater birdsfoot trefoil). Native species dominance shifted from dagger-leaf rush in 2012 (30.6%) to soft rush in 2014 (66% cover, up from 14% in 2012). Greater birdsfoot trefoil is a

common dominant in disturbed wetlands and areas that are transitional between wetland and upland; this species decreased from 2012 to 2014 (30% to 21% respectively), and it is likely to decrease further in the future as shading by shrubs increases. (Note that the nomenclature for birdsfoot trefoil was changed from *Lotus corniculatus* to *Lotus uliginosus* in 2014, based on identification of Pixieland specimens by Dick Brainerd of the Carex Working Group.)

Vegetation mapping

We mapped 10 vegetation alliances and 26 vegetation associations at Tamara Quays (Maps 5 and 6, Appendix 4; Tables 15-17). Native-dominated alliances occupied the majority (71%) of the site's area (Table 16); the soft rush, common cattail alliances occupied the greatest area (24.1% and 15.7% respectively), (Table 15). Photo 8 in Sub-Appendix 2 of Appendix 7 shows an overview of the soft rush and common cattail communities at the site.

		% of total	Native-
Alliance	Acres	area	dominated?
creeping bentgrass	1.11	7.19	N
red alder	1.56	10.11	Y
Lyngbye's sedge	0.52	3.40	Y
tufted hairgrass	0.70	4.58	Y
creeping spikerush	0.07	0.43	Y
Baltic rush	1.15	7.47	Y
soft rush	3.71	24.10	Y
reed canarygrass	1.78	11.55	N
Sitka spruce	0.80	5.17	Y
common cattail	2.41	15.66	Y
water	1.59	10.34	n/a
Total	15.39	100.00	

Table 15. Tamara Quays vegetation mapping: Area of alliances, 2014.

 Table 16. Tamara Quays: Area of native-dominated versus non-native-dominated vegetation

 alliances, 2014. Native-dominated alliances can contain non-native species, and vice versa.

Native-dominated?	Acres	% of area
Υ	10.91	70.92
Ν	2.88	18.74
n/a (water)	1.59	10.34
Total	15.39	100.00

Map unit	Association name	Acres
1	Baltic rush - creeping spikerush - Pacific silverweed	0.22
2	Baltic rush - Lyngbye's sedge - creeping bentgrass	0.23
3	Baltic rush - Lyngbye's sedge - creeping bentgrass - creeping spikerush	0.70
4	common cattail	1.14
5	common cattail - Baltic rush - creeping spikerush - soft rush	0.45
6	common cattail - reed canarygrass - soft rush	0.82
7	creeping bentgrass - reed canarygrass	1.11
8	creeping spikerush	0.07
9	Lyngbye's sedge	0.05
10	Lyngbye's sedge - creeping bentgrass - Baltic rush	0.48
11	red alder / (Douglas' spiraea) / Slough sedge - Reed canarygrass	0.29
12	red alder / slough sedge - skunk cabbage	1.27
13	reed canarygrass	0.20
14	reed canarygrass - (common cattail)	0.72
15	reed canarygrass - Pacific silverweed - common cattail	0.73
16	reed canarygrass - soft rush - Baltic rush - creeping spikerush	0.13
17	Sitka spruce - red alder / slough sedge - skunk cabbage	0.80
18	soft rush - Baltic rush	0.23
19	soft rush - Baltic rush - creeping spikerush - Pacific silverweed	0.95
20	soft rush - Baltic rush - reed canarygrass	1.30
21	soft rush - Baltic rush - reed canarygrass - creeping bentgrass	0.24
22	soft rush - creeping spikerush - Baltic rush - creeping bentgrass	0.38
23	soft rush - greater birdsfoot trefoil	0.61
24	tufted hairgrass - Baltic rush - creeping bentgrass	0.33
25	tufted hairgrass - creeping bentgrass - reed canarygrass	0.18
26	tufted hairgrass - soft rush - Baltic rush - creeping bentgrass	0.19
27	water	1.59
	Grand Total	15.39

Table 17. Tamara Quays: Area of plant associations, 2014. Rows are shaded by alliance.

The areas dominated by non-native species were primarily in the ungraded portions of the site (Map 5), indicating the effectiveness of grading at removing reed canarygrass at this site and in this specific landscape setting. The two non-native alliances were reed canarygrass and creeping bentgrass; their distribution at the site reflects salinity gradients. Reed canarygrass is considerably less tolerant of salinity compared to creeping bentgrass (Adamus 2005); it predominated on ungraded surfaces in the south and west portions of the site, possibly due to freshwater input from Rowdy Creek and hillslope seepage. The creeping bentgrass alliance occupied the old marsh surface in the northwest of the site, where brackish tidal flows are the

predominant source of wetland hydrology. Soil salinity data, which will be collected in Year 10 (2019), will be very helpful in interpreting these patterns of vegetation development.

Many of the associations mapped at the site are a mixture of native and non-native species (Table 17). We mapped these 26 associations separately based on the relative dominance of the species listed. This fine-grained separation of associations offers greater ability to interpret the trajectory of vegetation development at the site, particularly when combined with vegetation and soils data from the six monitoring transects. Re-mapping of vegetation, scheduled for Year 10 (2019) (Table 3), will provide the next important window into understanding overall vegetation development at Tamara Quays.

Soft rush: native and non-native subspecies

As described above and in **Vegetation mapping** below, soft rush has become dominant across much of the graded area in 2014. Both native and non-native subspecies of soft rush occur on the Oregon coast (Zika 2003). We examined a number of specimens for the key characteristics that distinguish the native from non-native subspecies (as listed in Zika, 2003), and found that many specimens had intermediate characteristics. Moreover, we could not determine any consistent relationship between gross plant morphology (plant stature, color, density of stems, etc.) and key characteristics. Given the extensive cover of this species across the site, it was therefore not possible within the scope of this project to determine whether all, some, or none of the soft rush cover was non-native. We discussed this with Department of State Lands staff, and they indicated that we should consider this species native for the purposes of this report in 2014 (Dana Field, personal communication, 7/7/14). We recommend further investigation into the extent of native *versus* non-native subspecies of soft rush at this site and others, to determine any functional differences. We also recommend investigation into possible reasons for intermediate morphological characteristics, such as potential hybridization.

Soils

Our effectiveness monitoring program at Tamara Quays includes soil sampling in 2007 (for ungraded transects) and 2010 (for graded transects), and re-sampling in 2019 for all transects. For information on soil characteristics from the 2007 and 2010 sampling, see the 2012 report (Brophy 2012b).

Water quality: salinity and temperature

Although our scope of work does not include water quality sampling at Tamara Quays, some water quality sampling at the site and nearby sites is conducted by the Salmon-Drift Creek Watershed Council. During 2011-2012, we provided technical input to the Council for salinity monitoring at Tamara Quays; some of the data from that period were provided to us by the

Council. The data showed strongly brackish salinity peaks (~20 PSU) at higher high tide in Rowdy Creek within Tamara Quays in June, and mesohaline surface water (~5 to 6 PSU) at lower high tide, with fresher flows during low tides. These June data suggest that salinities across the site are even more brackish in late summer/early fall. Salinities across the marsh surface probably vary by distance from Rowdy Creek, but nonetheless, brackish salinities should help control reed canarygrass and promote establishment of native tidal marsh species (such as tufted hairgrass) throughout the site. A more detailed summary is provided in the 2012 monitoring report (Brophy 2012b).

4. Maps – see Appendix 4

5. Conclusions and recommendations

Based on our monitoring at Tamara Quays in 2007 through 2014, we conclude that the restoration work has successfully re-established the natural forces that will build and sustain the desired wetland functions at the site. As described in the 2010 and 2012 report, the site was graded to specifications; free tidal exchange is occurring and the tidal inundation regime matches that of the reference area. This year's monitoring shows that plant cover has continued to increase rapidly since 2012, and typical native brackish tidal marsh species are dominant on most of the graded area.

Invasive reed canarygrass has decreased since 2012 in parts of the graded area, as has greater birdsfoot trefoil. The strongly brackish salinities measured at the site are likely to continue suppressing the reed canarygrass and favor native marsh vegetation in the long term. However, reed canarygrass continues to be present as a dominant in many parts of the site, and has even increased in some areas (e.g. TQ T7). Continued effectiveness monitoring during 2016-2019, as outlined in Table 3, will be very important to tracking this species' status at the site. Soil salinity data, combined with vegetation mapping and transect/quadrat monitoring, will be particularly helpful for understanding the patterns of invasive, non-native and native dominance.

Of the two sample transects in the ungraded areas, TQ T3 was still dominated by reed canarygrass (TQ T3), and TQ T2 was increasingly dominated by reed canarygrass and the brackish-tolerant non-native species, creeping bentgrass. Seeding tufted hairgrass and other native brackish-tolerant graminoids in these ungraded areas could help restore some diversity and suppress the non-natives.

This year's applicable performance standards have been met, with one exception – native shrub cover is not yet more than 30% within the shrub-dominated habitats (Transect 5). However, shrub densities are high and have held steady since 2010, and volunteer shrubs and trees are becoming established, indicating favorable conditions. Therefore, in our professional judgment, the failure to meet this standard does not indicate any structural or functional problems with the project, and no remedial action is recommended.

Appendix 1. Effectiveness Monitoring Scope of Work

*NOTE: This Appendix provides the scope of work established by contract between the Salmon Drift Creek Watershed Council and Green Point Consulting in 2009, as amended in January 2012.

Project: Effectiveness Monitoring at the Tamara Quays Restoration Project, Salmon River Estuary, 2009-2014

Contact

Laura Brophy, Green Point Consulting, 541-752-7671, brophyonline@gmail.com

Goal

Track effectiveness of restoration investments and achievement of project goals through measurements of key ecological and physical parameters at Tamara Quays.

Ecological Significance

This project will evaluate the outcome of restoration investments at the Tamara Quays Restoration Project through quantitative monitoring of controlling factors and ecosystem services for 5 years after restoration. The Tamara Quays project is described in the Environmental Assessment for the Tamara Quays and Crowley Creek Restoration (USFS 2008). Restoration work includes removal of a dike and tide gate that currently block all tidal exchange from the site; filling of a bypass canal and removal of the bypass canal levee; removal of fill material from the former marsh surface; and grading of the surface to reference marsh elevation. The work will restore ecologically significant tidal wetland habitats which have been prioritized at national, regional and state scales (e.g. ODFW 2005, OWEB 2006, Brophy 2007a, Kagan *et al.* 2005).

Methods

Use standard monitoring protocols and analytical methods established in national and regional restoration monitoring guidance (Roegner *et al.* 2008, Rice *et al.* 2005, Thayer *et al.* 2005). Monitor both restoration and reference sites to help track systemwide changes. Monitor physical "controlling factors" ("ecosystem drivers") that create desired wetland functions, and resulting biological characteristics. Compare baseline data to post-restoration data to document restoration trajectory.

Controlling and structural factors to be monitored include tidal inundation and soil characteristics. Biological characteristics to be monitored include plant community composition and plant community extent. The project will use stratified, randomized and replicated sample design to allow statistical analysis of ecological linkages and change over time. Practical, user-friendly analyses and products will be provided. All work will be compatible with regional and national standards and guidance, to maximize exchange of scientific knowledge.

Rationale

The physical and biological characteristics of tidal wetlands, and the ecosystem services they provide, are tightly linked. The most effective and sustainable restoration projects are those which, like the Tamara Quays project, restore natural forces ("controlling factors"). These natural forces structure and maintain wetland functions without further human intervention, maximizing the likelihood of longterm restoration success (Simenstad and Bottom 2005). Because of the importance of controlling factors, they should be monitored directly to document whether restoration has successfully restored these "ecosystem drivers." The controlling factors we will measure in this project are recognized as top priorities for effectiveness monitoring (Roegner *et al.* 2008, Rice *et al.* 2005, Thayer *et al.* 2005).

Along with ecosystem drivers, we will simultaneously measure biological characteristics (plant community composition and plant community extent). Vegetation forms the vital link between "controlling factors" and valued wetland functions and ecosystem services. Plant communities form the base of the food web, and they shelter, feed, and house valued fish and wildlife species. Vegetation processes and converts nutrients; traps sediment; and detains flood flows. Vegetation is a top priority monitoring parameter in regional and national monitoring guidance (Roegner *et al.* 2008, Rice *et al.* 2005, Thayer *et al.* 2005) because it is clearly visible, easily measured in one field session per year, and stabilizes relatively quickly following restoration.

Indicator	Monitored metric	Data collection method(s)		
category				
Hydrology	Surface water elevation	Automated level logger ("tide gauge")		
Elevation	Elevation of study plots	Laser level or total station		
	and instrumentation			
Vegetation	Plant community	Study plots located within elevation		
	composition	strata; visual estimate of percent cover		
		within randomly located subplots		
Vegetation	Extent of plant	GIS mapping via heads-up digitization		
	communities	from orthorectified aerial photos		
		provided by USFS		
Soils	% organic matter, pH,	Surface 30cm cores from sample plots;		
	electrical conductivity	analysis at OSU Central Analytical Lab		

Deliverables

Brief annual summary reports will be provided, describing work completed, a summary of results, and problems or challenges encountered or anticipated. A final report will be provided, including methods, results, statistical analysis, discussion, and recommendations for future work. All data collected will be delivered as electronic datafiles, JPGs (for photos), and shapefiles as appropriate.

#	Monitored metric	2007 ¹	2009	2010	2011	2012	2014	2016	2019
1	Tidal inundation regime ²	x	Х	Х	Х				
2	Elevations of instrumentation and study plots ³		Х	Х	Х				
3	Vegetation composition in transects	X ⁴		X ⁵		х	х	х	х
4	Vegetation mapping		X ⁶				X ⁷		X ⁷
5	Soil OM, pH, EC	X ⁸							Х
6	Wetland delineation		Х ⁹				X ¹⁰		
7	Functional assessment ¹¹		Х				Х		

Table 2. Timeline for Tamara Quays monitoring program (GPC activities)

Notes on Green Point Consulting monitoring program:

- 1. Data collection in 2007 was completed under a separate USFS contract.
- 2. USFS staff downloaded water level data from tide gauges and provided it to GPC during 2009-2011. GPC completed data analysis, interpretation and reporting during 2010-2011 as required by the USFS-DSL Grant Agreement. Given the results, no further tidal inundation monitoring is required.
- 3. Elevation survey of transects and instrumentation was conducted during 2009-2011 by USFS, with technical liaison provided by GPC. Survey work was completed in 2011.
- 4. Under a separate contract with USFS, GPC monitored vegetation in 2007 at one transect in the reference area (T1) and one transect in the restoration area (T2). Vegetation monitoring follows the methods outlined in DSL's Routine Monitoring Guidance.
- 5. Five additional vegetation transects were added after grading in 2010. All seven transects will be monitored in 2012, 2014 and 2016. Vegetation monitoring follows the methods outlined in DSL's Routine Monitoring Guidance.

- 6. Baseline vegetation map (2009) used USFS 2008 aerial photos and identified general vegetation type (Cowardin class) and wetland status rather than specific plant communities for the area to be graded.
- 7. Post-restoration plant community mapping will be conducted in 2014 and 2019, and will be limited to wetlands. Budget assumes that USFS will provide recent, high resolution, orthorectified aerial photographs (ready for use in GIS) for 2014 and 2019 mapping.
- 8. Soil analysis was completed for 2007 under a separate contract with USFS.
- 9. Pre-project wetland delineation was funded through a separate contract between USFS and Cramer Fish Sciences.
- 10. Post-project wetland delineation in 2014 will follow DSL's "delineation lite" methods.
- 11. Functional assessment uses the ORWAP method to meet current state requirements.

References for Appendix 1 are included in Appendix 3 (References)

Appendix 2. Tamara Quays Project Goals and Objectives

(from Tamara Quays Mitigation Plan)

This appendix is a direct excerpt from the Tamara Quays Mitigation Plan (provided by Dana Hicks of DSL on January 28, 2010). This complete listing of project goals and objectives, with the corresponding Performance Standards, provides context for the performance standards listed on the cover sheet of this report.

Goal: Reconnect natural flows and tidal influence.

Objective 1—Restore 17 acres of wetland habitat.

Performance Standard 1— By year 5, a delineation "lite" will show that areas formerly occupied by dikes, borrow channels, and fill areas meet, or are likely to meet criteria for wetland vegetation and hydrology. If hydric soil field indicators are not present, but hydrology and vegetation indicators are positive, the plot may still be called wetland.

Objective 2— Elevations outside of Rowdy Creek are 5 to 5.5 ft (NGVD 29), or at the historic marsh surface where apparent.

Performance Standard 2— Elevations, as demonstrated in the as-built, are as outlined in the grading plan, or are graded to follow the historic marsh surface where apparent and noted.

Objective 3—The tidal flow regime is similar to that at the reference estuary, after adjusting for elevations.

Performance Standard 3—There is a free exchange of tides, creating a tidal inundation regime similar to that of the reference site (after adjusting for relative elevations) as determined by data collected for at least one year using the existing tide gauge locations (one in reference marsh, one in project area).

Objective 4—Small hillside drainages within the project drain to Rowdy Creek.

Performance Standard 4.1—The as-built and/or photo documentation will demonstrate that grading allows hillside drainages to flow into the project area.

Performance Standard 4.2— In years 2, 4, 6, 8, and 9, visual inspection and photo or video documentation will show that surface water flowing from hillside drainages is entering the project area.

Goal: Restore fish passage to the project area

See performance standards 2 and 3.

Objective 5—During the wettest time of the year, at least 75% of surface water is in or connected to a flowing channel that leaves the site.

Performance Standard 5—In years 2, 4, 6, 8, and 9, visual estimates and photo or video documentation taken during a mean high tide or higher will demonstrate that at least 75% of surface water on the site is connected to the stream channel rather than isolated in pools.

Objective 6—Large woody debris is present to provide microhabitats and cover for salmonids.

Performance Standard 6— In years 2, 4, 6, 8, and 9, visual estimates and photo or video documentation taken during a mean high tide or higher will demonstrate that at least 20 pieces of wood greater than 16" diameter are in contact with the water during mean high tide or higher.

Goal: Re-establish native estuarine vegetation

Objective 7—Vegetation is dominated by native species and invasive species are at a level that does not hinder the functionality of the site.

Performance Standard 7.1—In shrub-dominated habitats the cover of native herbaceous species in the understory is at least 40% by year 1; at least 50% by year 3; and at least 60% by year 5.

Performance Standard 7.2—In shrub-dominated habitats the absolute cover of invasive herbaceous species, except for Phalaris arundinacea (reed canary grass), is no more than 10%. The absolute cover by P. arundinacea is no more than 40% by year 1; 30% by year 3; and 20% by year 5.

Performance Standard 7.3— In shrub-dominated habitats, the cover of native shrubs is at least 10% by year 3 and 30% by year 5. Native species volunteering on the site may be included, dead plants do not count.

Performance Standard 7.4—In shrub-dominated habitats the cover of invasive shrub or tree species is no more than 10% in all monitoring years.

Performance Standard 7.5—In shrub-dominated habitats, there are at least 3 different native species in all habitat types by year 5. To qualify, a species will have at least 5% average cover in the elevation class, and occur in at least 10% of the plots sampled.

Performance Standard 7.6—In tidal areas, cover by invasive species relative to the total vegetation (not counting bare ground) is no more than 50% by year 1, 40% by year 3, and 30% by year 5.

Performance Standard 7.7—In the tidal area, at least three of the species documented in the reference marsh occur in the project area by year 5.

Performance Standard 7.8—In the tidal area, cover by native species is progressing toward reference conditions, currently measured at 60%, over the monitoring period.

Performance Standard 7.9—In the tidal areas, total plant cover is progressing toward reference conditions, currently measured at 94.8%, over the monitoring period.

Performance Standard 7.10— The moisture index total for all strata is <3.0 in all habitat types over the monitoring period.

Appendix 3. References

Adamus, P.R. 2005. Science Review and Data Analysis for Tidal Wetlands of the Oregon Coast. Part 2 of a Hydrogeomorphic Guidebook. Report to Coos Watershed Association, US Environmental Protection Agency, and Oregon Dept. of State Lands, Salem. Accessed 5/31/12 at <u>http://www.oregon.gov/dsl/WETLAND/docs/tidal_HGM_pt2.pdf.</u>

Brophy, L.S. 2012a. Annual Compensatory Wetland Mitigation Monitoring Report, 2012: Offsite Mitigation, North Fork Siuslaw River Bridge Project. Prepared for the Oregon Department of Transportation. Green Point Consulting, Corvallis, OR.

Brophy, L.S. 2012b. 2012 Monitoring Report: Tamara Quays Tidal Wetland Restoration. Report to Salmon-Drift Creek Watershed Council, Neotsu, Oregon. Green Point Consulting, Corvallis, Oregon.

Brophy, L.S. 2011. 2011 Monitoring Report: Tamara Quays Tidal Wetland Restoration. Report to Salmon-Drift Creek Watershed Council, Neotsu, OR. Green Point Consulting, Corvallis, OR.

Brophy, L.S. 2010a. 2010 Monitoring Report: Tamara Quays Tidal Wetland Restoration. Report to Salmon-Drift Creek Watershed Council, Neotsu, OR. Green Point Consulting, Corvallis, OR.

Brophy, L.S. 2010b. Vegetation monitoring and mapping, 2008-2009: Little Nestucca Tidal Wetland Restoration Site, Nestucca Bay National Wildlife Refuge. Prepared for Ducks Unlimited, Vancouver, WA, and U.S. Fish and Wildlife Service, Newport, OR. Green Point Consulting, Corvallis, OR.

Brophy, L.S. 2009a. Pre-Restoration Wetland Delineation: Tamara Quays Tidal Wetland Restoration Site, Salmon River Estuary. Prepared for Salmon-Drift Creek Watershed Council, Neotsu, OR and U.S. Forest Service – Siuslaw National Forest, Corvallis, OR. Green Point Consulting, Corvallis, OR.

Brophy, L.S. 2009b. Effectiveness Monitoring at Tidal Wetland Restoration and Reference Sites in the Siuslaw River Estuary: A Tidal Swamp Focus. Prepared for Ecotrust, Portland, OR. 125 pp. Green Point Consulting, Corvallis, OR.

Brophy, L.S. 2007a. Estuary Assessment: Component XII of the Oregon Watershed Assessment Manual. Prepared for the OR Department of Land Conservation and Development and the Oregon Watershed Enhancement Board, Salem, OR. Green Point Consulting, Corvallis, OR. <u>http://www.oregon.gov/OWEB/docs/pubs/wa_estuary/Estuary_Assessment_2007.pdf</u>.

Brophy, L.S. 2007b. Vegetation monitoring and mapping at tidal wetland restoration and reference sites: Siletz Bay National Wildlife Refuge and Yaquina River Estuary. Report to Confederated Tribes of Siletz Indians, Siletz, OR. 42 pp. Green Point Consulting, Corvallis, Oregon.

Brophy, L.S. 2005. Anderson Creek vegetation monitoring 2003-2005. Report to South Slough Natl. Estuarine Research Reserve, Charleston, OR. 25 pp. Green Point Consulting, Corvallis, OR.

Brophy, L.S. 2004. Yaquina estuarine restoration project: Final report. Prepared for MidCoast Watersheds Council, Newport, OR. 99 pp. Green Point Consulting, Corvallis, OR.

Brophy, L.S. 2002. Siletz Bay NWR and Nestucca Bay NWR Tidal Marsh Restoration and Reference Sites: Baseline Plant Community Monitoring and Mapping. Prepared for USFWS Oregon Coast National Wildlife Refuge Complex, Newport, OR. Green Point Consulting, Corvallis, OR.

Brophy, L.S., and J.A. Christy. 2009. 2008 Effectiveness Monitoring: Lint Slough, Alsea Estuary, Oregon. Prepared for Oregon Department of Fish and Wildlife and the MidCoast Watersheds Council. 83 pp.

Brophy, L.S., C.E. Cornu, P.R. Adamus, J.A. Christy, A. Gray, M.A. MacClellan, J.A. Doumbia, and R.L. Tully. 2011. New Tools for Tidal Wetland Restoration: Development of a Reference Conditions Database and a Temperature Sensor Method for Detecting Tidal Inundation in Leastdisturbed Tidal Wetlands of Oregon, USA. Report to the Cooperative Institute for Coastal and Estuarine Environmental Technology (CICEET), Durham, NH. 199 pp. http://rfp.ciceet.unh.edu/display/report.php?chosen=1321

Brophy, L.S., S. van de Wetering, M.J. Ewald, L.A. Brown, and C.N. Janousek. 2014. Ni-les'tun Tidal Wetland Restoration Effectiveness Monitoring: Year 2 Post-restoration (2013). Corvallis, Oregon: Institute for Applied Ecology. Accessed 9/10/14 at <u>https://www.dropbox.com/s/lvukn7tzhypfkzz/Nilestun Year2 EM report FINAL 20140730-</u> <u>1.pdf?dl=0</u>

Cornu, C., H. Harris, and A. Helms. 2011. NOAA Reference Sites: Measuring Salt Marsh Plant, Soil and Hydrologic Response to Restoration Using Performance Benchmarks from Local Reference Sites. South Slough NERR Report to NOAA. 58 pp.

Cornu, C.E., and S. Sadro. 2002. Physical and functional responses to experimental marsh surface elevation in Coos Bay's South Slough. *Restoration Ecology* 10(3): 474-486. http://www.southsloughestuary.org/publications/reclkunz.pdf

Kagan, J.A., J.A. Christy, M.P. Murray, and J.A. Titus. 2005. Classification of Native Vegetation of Oregon. Oregon Natural Heritage Program. <u>http://oregonstate.edu/ornhic/publications.html</u>

Oregon Department of Fish and Wildlife (ODFW). 2005. Oregon Conservation Strategy. Salem, Oregon. <u>http://www.dfw.state.or.us/conservationstrategy/</u>

Oregon Department of State Lands (OR DSL). 2010a. Statewide Fee-In-Lieu Instrument Modification Proposal: Mitigation Plan for Tamara Quays Project. January 28, 2010. Oregon Department of State Lands (OR DSL). 2010b. Tamara Quays Wetlands Grant Agreement. June 16, 2010.

Oregon Department of State Lands (OR DSL). 2009. Routine Monitoring Guidance for Vegetation. Interim Review Draft Version 1.0, September 23, 2009. Available online at http://www.oregon.gov/DSL/PERMITS/docs/dsl routine monitoring guidance.pdf

OWEB (Oregon Watershed Enhancement Board). 2006. Restoration Priorities. <u>http://www.oregon.gov/OWEB/GRANTS/restoration_apps.shtml#Restoration_Priorities</u>

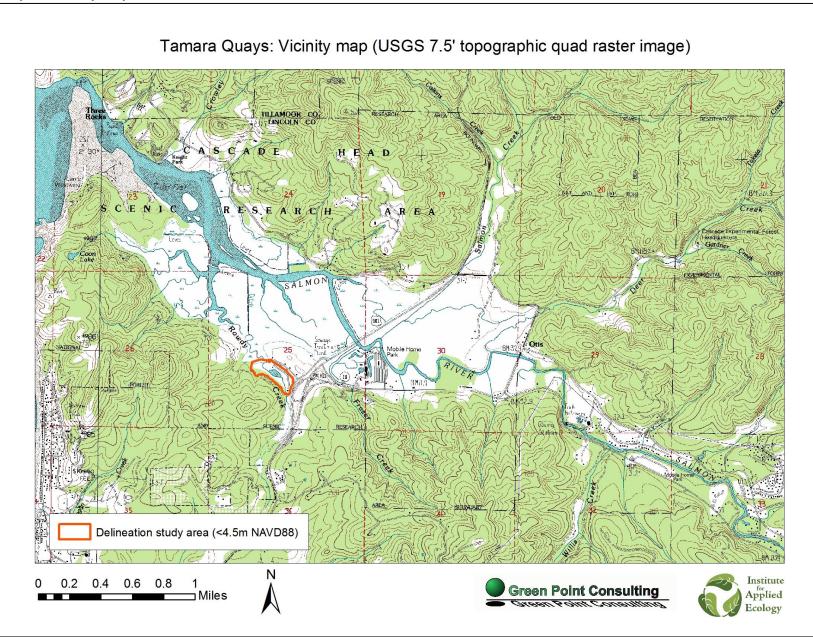
Rice, C.A., W.G. Hood, L.M. Tear, C.A. Simenstad, G.D. Williams, L.L. Johnson, B.E. Feist, and P. Roni. 2005. Monitoring Rehabilitation in Temperate North American Estuaries. In P. Roni (Ed.), Methods for monitoring stream and watershed restoration. Am. Fisheries Soc., Bethesda, MD.

Roegner, G.C., H.L. Diefenderfer, A.B. Borde, R.M. Thom, E.M. Dawley, A.H. Whiting, S.A. Zimmerman, and G.E. Johnson. 2008. *Protocols for Monitoring Habitat Restoration Projects in the Lower Columbia River and Estuary.* PNNL-15793. Report by Pacific Northwest National Laboratory, National Marine Fisheries Service, and Columbia River Estuary Study Taskforce submitted to the U.S. Army Corps of Engineers, Portland District, Portland, Oregon. <u>http://www.pnl.gov/main/publications/external/technical_reports/PNNL-15793.pdf</u>

Simenstad, C. A., and D. Bottom. 2002. Guiding ecological principles for restoration of salmon habitat in the Columbia River estuary. School of Aquatic and Fisheries Science, University of Washington, and NOAA Fisheries, Seattle. <u>http://fish.washington.edu/research/wet/new.html</u>

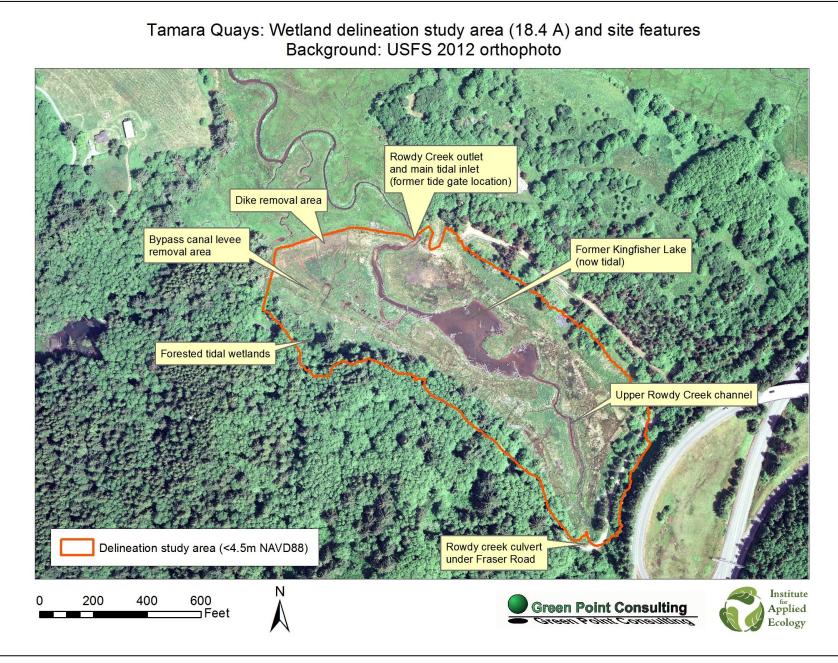
Thayer, Gordon W., Teresa A. McTigue, Ronald J. Salz, David H. Merkey, Felicity M. Burrows, and Perry F. Gayaldo (Eds.). 2005. Science-Based Restoration Monitoring of Coastal Habitats, Volume Two: Tools for Monitoring Coastal Habitats. NOAA Coastal Ocean Program Decision Analysis Series No. 23. NOAA National Centers for Coastal Ocean Science, Silver Spring, MD.

The Nature Conservancy. 1994. Standardized National Vegetation Classification System. Prepared for U.S. Department of Interior, National Biological Survey and National Park Service. November 1994.

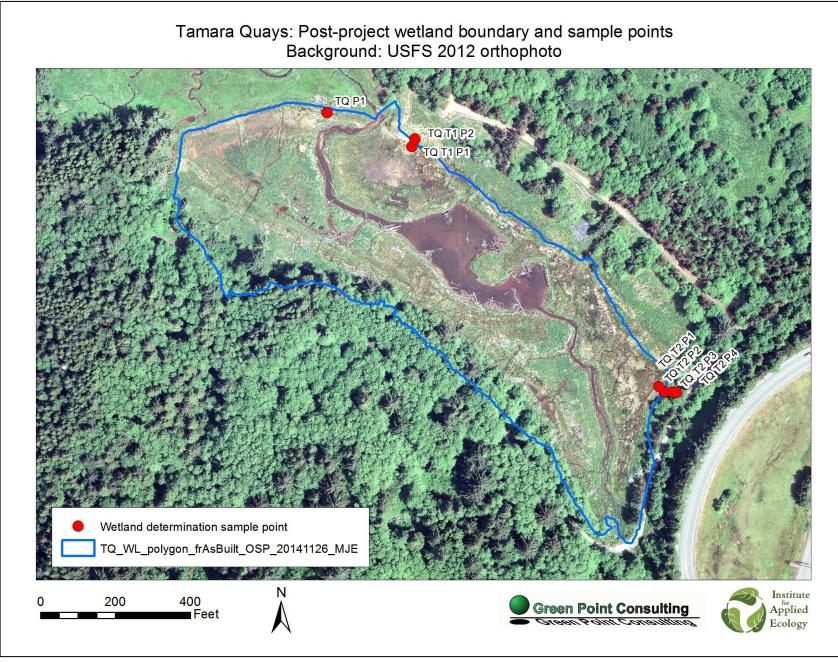

U.S. Forest Service, Siuslaw National Forest. 2008. Tamara Quays and Crowley Creek Restoration Projects Environmental Assessment.

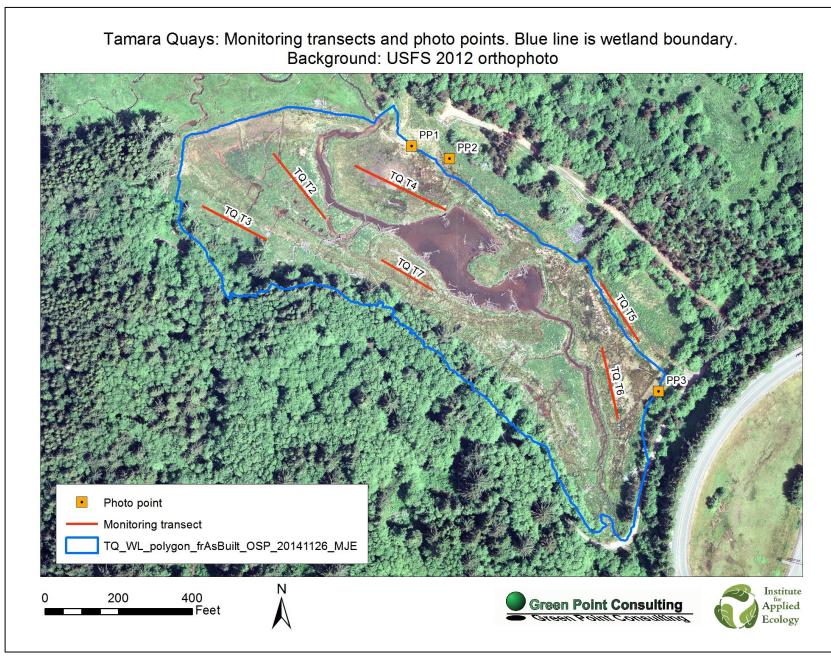
Watershed Sciences, Inc. 2009. LiDAR Remote Sensing Data Collection, Department of Geology and Mineral Industries, North Coast, Oregon. Submitted to Oregon Department of Geology and Mineral Industries, Portland, OR. Watershed Sciences, Portland, OR.

Zika, P. 2003. The native subspecies of *Juncus effusus* (Juncaceae) in western North America. Brittonia 55(2): 150-156.

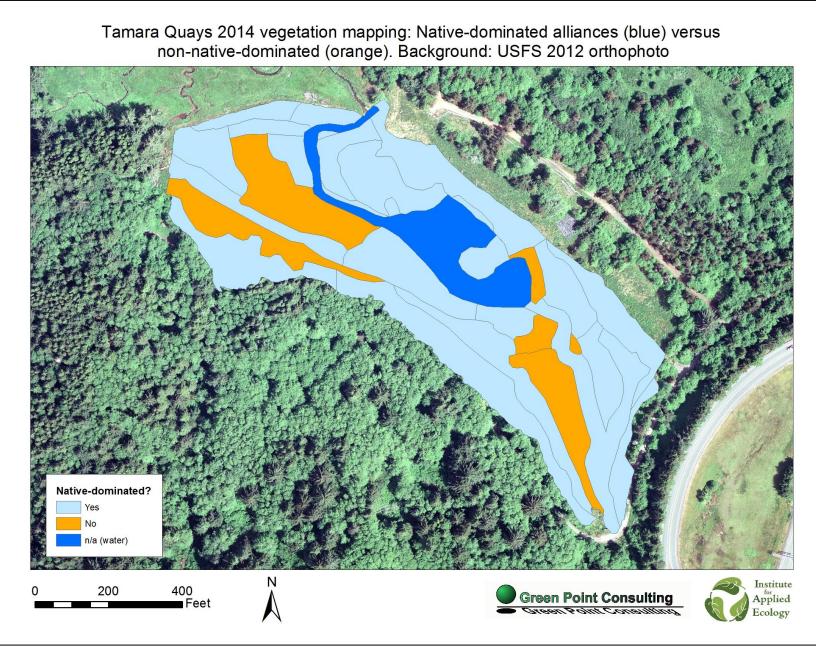

Appendix 4. Maps

(see following pages)

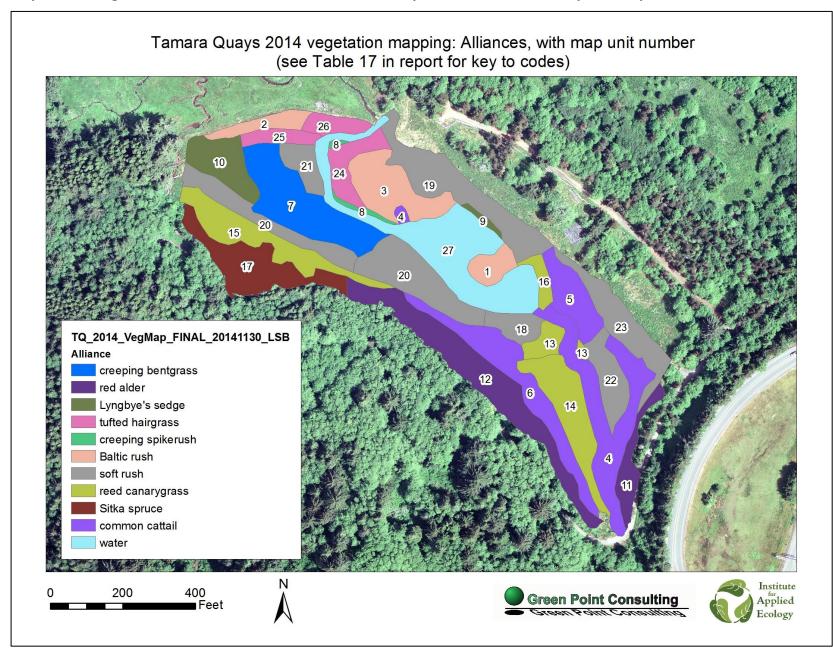

P. 42 of 118, 12/1/2014


P. 43 of 118, 12/1/2014

P. 44 of 118, 12/1/2014

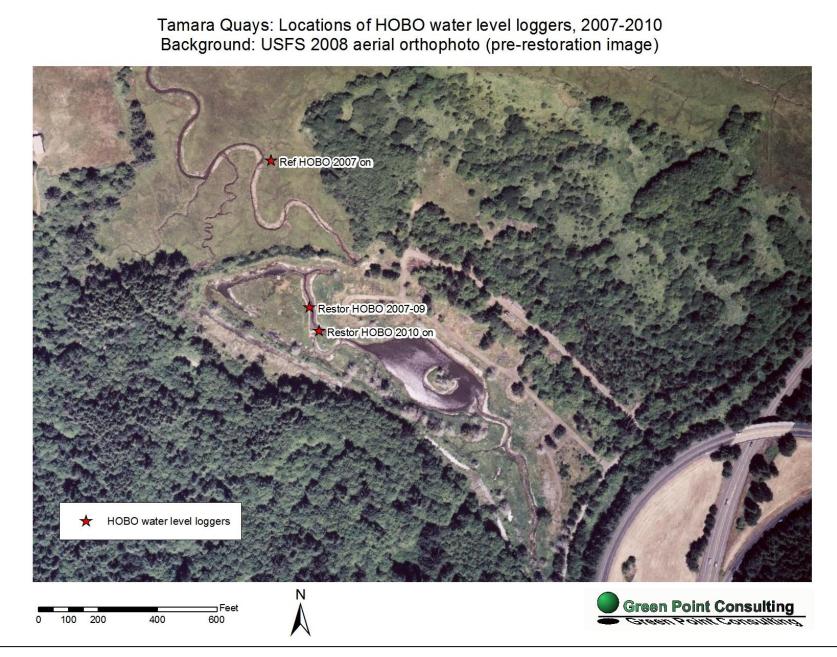

Map 4. Monitoring transects and photo points. Photo points are included in the wetland delineation report (Appendix 7).

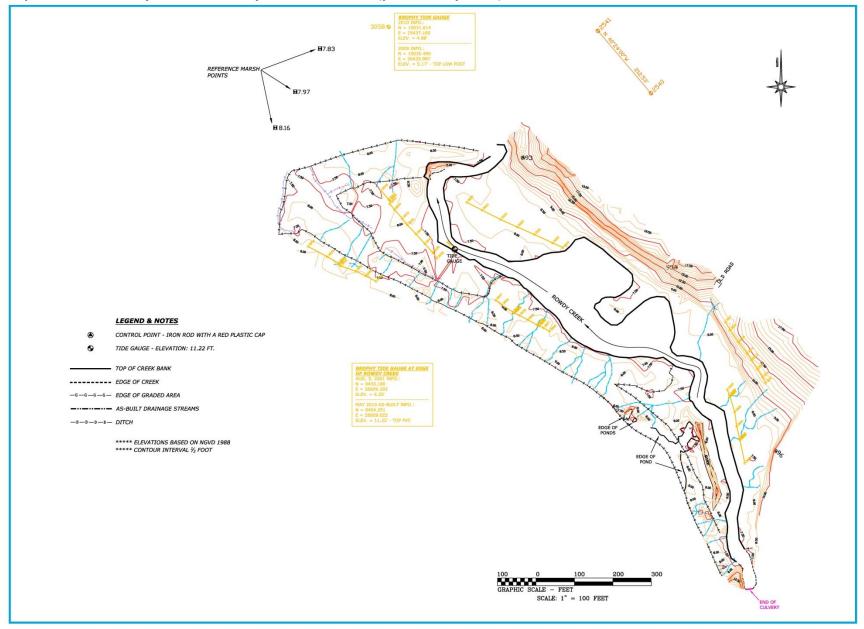
Tamara Quays Monitoring Report, 2014


P. 45 of 118, 12/1/2014

Map 5. 2014 vegetation map: Alliances colored by native dominance. Alliances dominated by native species are blue, non-native orange.

Tamara Quays Monitoring Report, 2014

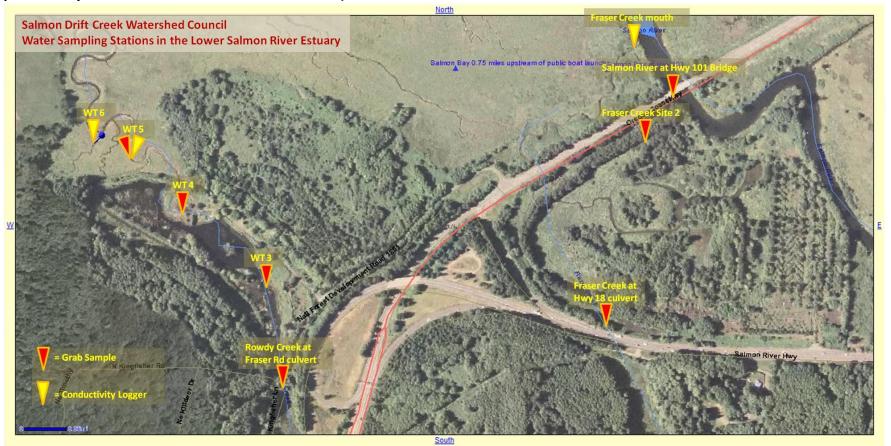

P. 46 of 118, 12/1/2014


P. 47 of 118, 12/1/2014

Map 7. Water level logger locations

Tamara Quays Monitoring Report, 2014

P. 48 of 118, 12/1/2014



Map 8. As-built survey of Tamara Quays restoration site (provided by USFS)

Tamara Quays Monitoring Report, 2014

P. 49 of 118, 12/1/2014

Map 9. Salmon Drift Creek Watershed Council's water sampling stations near Tamara Quays and Pixieland restoration sites, 2011-2012 (map provided by Salmon Drift Creek Watershed Council)

Appendix 5. Vegetation summary tables, DSL Routine Monitoring Protocol

Site: Tamara Quays TQ T5	Sample Date(s):	Wetland indicate	or status: 1=	OBL 2=F	ACW 3=FAC	4=FACU	5=UPL										
Shrub-Dominated Wetland Habitat Unit	6/30/2014		Perce	nt Cover													
Species	Origin (N,NN,I)	Wet. Ind. Status (1-5)	1 2	3	4 5	6	7	8	9	10	11	12	13	14		ransect verage	% plot occurrence
	(11,1111,1)	Status (1-5)	1 2	3	4 0	0	1	0	9	10		12	15	14	15 A	verage	occurrence
Herbaceous plots																	
Native Herbaceous Species																	
Deschampsia cespitosa	N	2	5		0			0	0		0	0		0	0	0.5	
Epilobium ciliatum	N	2	C		0	-		1	0		0	0		0	0	0.1	
Carex lyngbyei	N	1	2		0			0	0		0	0		0	0	0.2	
Juncus effusus	N	2	50	65	90	95		62	50		92	40		60	60	66.4	100
Invasive Herbaceous Species																	
Phalaris arundinacea L.	I.	2	3		4	0		0	5		0	0		0	0	1.6	
Holcus lanatus	I	3	5	3	1	0		4	5		0	3		5	0	2.6	6 46.7
Anthoxanthum odoratum	I	4	C	0	0	0		2	0		0	0		0	0	0.2	2 6.7
Non-Native Herbaceous Species																	
Agrostis stolonifera	NN	3	C	0	0	0		0	0		0	0		0	0	0.0) (
Lotus uliginosus	NN	3	35	25	5	5		14	30		8	30		35	20	20.7	66.7
Schedonorus arundinaceus	NN	3	C	0	0	0		0	0		0	0		0	0	0.0) (
Unknown Species																	
Poa sp.	Unknown		C	0	0	0		0	0		0	0		0	0	0.0) (
Shrub Species measured in herbaceous p	olots																
Salix sitchensis	N	2	C	1	0	0		17	10		0	27		0	0	5.5	5 40
Salix hookeriana Barratt ex Hook.	Ν	2	C	2	0	0		0	0		0	0		0	20	2.2	20
Bare Substrate																	
Bare ground			C	0	0	0		0	0		0	0		0	0	0.0) (
Thatch/Detritus			C	0	0	0		0	0		0	0		0	0	0.0) (
Water			C	0	0	0		0	0		0	0		0	0	0.0) (
Summaries for herbaceous plots:																	
Total cover, native herbaceous species			57	65	90	95		63	50		92	40		60	60	67.2	2
Total cover, non-native herbaceous species			35		5	5		14	30		8	30		35	20	20.7	,
Tot cov inv herb spp INCL PHAARU (for std.	5.1)		8		5	0		6	10		0	3		5	0	4.4	
Tot cov inv herb spp EXCL PHAARU (for sta			5		1	0		6	5		0	3		5	0	2.8	}
Total cover, all herbaceous species			100		100	100		83	90		100	73		100	80	92.3	
Total cover, all species measured in herbace	ous plots		100	100	100	100		100	100		100	100		100	100	100.0)

TQ T5 (cont'd)

Shrub plots								
Native Shrub and Tree Species							Transect Average	% Plot Occurrence
Salix hookeriana Barratt ex Hook.	N 2	3	7	1	13	5	5.0	3 100
Salix sitchensis Sanson ex Bong, var. sitchensis	N 2	4	3	7	1	35	10.) 100
	N 3	0	0.5	0.5	0	2	0.0	60
Non-Native Shrub and Tree Species								
species-latin name								
Invasive Shrub and Tree Species								
species-latin name								
Bare Substrate								
Bare Ground								
Thatch/debris								
		Woody Plan	t Count					
Native Shrub and Tree Count							Avg stem	s Stems/A
	N 2	3	5	1	9	5	4.0	890.6
Salix sitchensis Sanson ex Bong. var. sitchensis	N 2	2	2	4	1	13	4.4	4 851.8
Alnus rubra	N 3	0	1	1	0	5	1.4	4 271.0
							TOTAL 10.4	4 2013.4

TQ T5 (cont'd)

Performance Standards	Threshold			1	2		3	4		5	6		7	8		9		Habitat Average	Standard Error
010.7.4	>=40% Yr1,						_	-			_								
STD 7.1:	50% Yr3,																		
Cover of Native Herbaceous Species	60% Yr5			57	65		90	95		63	50		92	40		60	60	67.20	5.94
Lower CI (80%)																		59.59	
Upper CI (80%)																		74.81	
(Total Vegetation Cover)				100	100		100	100		100	100		100	100		100	100	100.00	0.00
STD 7.2:a: Absolute Cover of Invasive																			
Herbaceous Species not including Phalaris	<=10%																		
arundinacea				5	3		1	0		6	5		0	3		5	0	2.80	0.76
Lower CI (80%)																		1.83	
Upper CI (80%)																		3.77	
	<=40% Yr1,																		
STD 7.2b: Absolute Cover of Phalaris	30% Yr3,																		
arundinacea	20% Yr5			3	4		4	0		0	5		0	0		0	0	1.60	0.67
Lower CI (80%)																		0.74	
Upper CI (80%)																		2.46	
STD 7.3: Cover of Native Shrubs	10% by Yr3,																		
	30% Yr5		7			10.5			8.5			14			42			16.40	6.51
Lower CI (80%)																		8.06	
Upper CI (80%)																		24.74	
STD 7.4: Cover of Invasive Shrubs and Trees			0			0			0			0			0			0.00	
Lower CI (80%)						-												0.00	
Upper CI (80%)																		0.00	
STD 7.5: Native Diversity (all layers)		Blue text in the	e native	species	in stell	alify												0.00	
STD 7.10: Moisture IndexAll strata	<3.0	Dide text in the	o nativo	2.38	2.35	Jointy	2.06	2.05		2.67	2.61		2.08	3.19		2.40	2.75	2.45	0.11
Weighted Prevalence Index				238	228		206	205		222	235		208	233		240	220	223.50	
Sum of plant cover				100	97		100	100		83	90		100	73		100	80	92.30	
				100	01		100	100		00	00		100	10		100	00	02.00	0.22
		Average per	0.00			45.40			4400			4000			4450				000 10
Density of Woody Vegetation		acre	968			1549			1162			1936			4453			2013.44	632.10
Plot Area (shrub/tree plot) in sq ft	225																		
Per acre multiplier: Input 4,047 if plot area																			
entered in B84 is in sq.meters or 43,560 for																			
sq.feet	43560																		
	>=50%		_			10.5									10			40.5	
Cover of Overstory Native Shrubs and Trees	(alternative)		7			10.5			8.5			14			42			16.4	
Lower CI (80%)																		8.06	
Upper CI (80%)																		24.74	

TQ T1 – Reference Marsh

TQ-T1 Reference	Sample Date(s):	Wetla	and ind	icator s	tatus: 1	=OBL 2	=FACW	3=FAC	4=FAC	:U 5=UI	PL								
Herbaceous Wetland Habitat Unit	6/30/2	014 P	ercent	Cover															
Species	Origin (N, NN, I)	We	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Transect Average	% plot occurrence
Native Herbaceous Species																			
Deschampsia cespitosa	N	2	5	8	0	3	20	0	2	4	2	0	12	35	0	25	40	10.40	73.3
Festuca rubra	N	3	0	0	0	0	0	0	0	0	0	3	3	1	0	0	0	0.47	7 20.0
Carex lyngbyei	N	1	0	0	0	0	0	0	0	0	0	0	0	0	0	20	2	1.47	7 13.3
Symphyotrichum subpicatum	N	2	3	2	5	2	0	2	0	0	0	0	3	0	4	0	0	1.40	46.6
Glaux martima	N	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0.07	6.6
Triglochin maritima	N	1	0	0	0	0	0	0	0	0	2	0	1	0	0	0	0	0.20) 13.3
Oenanthe sarmentosa	N	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0.07	6.6
Potentilla anserina	N	1	80	55	60	85	10	80	55	54	60	58	40	45	50	10	35	51.80	
Achillea millefolium	N	4	0	0	0	0	0	0	0	2	0	0	12	0	0	0	0	0.93	
Hordeum brachyantherum	N	2	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0		
Juncus balticus	Ν	2	10	30	26	8	20	10	35	35	36	29	13	11	6	0.01	15	18.93	
Invasive Herbaceous Species																			
Phalaris arundinacea L.	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00	0.0
Holcus lanatus	1	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00	0.0
Anthoxanthum odoratum	1	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00	0.0
Non-Native Herbaceous Species																			
Agrostis stolonifera	NN	3	2	0	4	2	20	8	8	4	0.01	10	15	8	40	10	8	9.27	7 93.3
Lotus uliginosus	NN	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00	0.0
Schedonorus arundinaceus	NN	3	0	4	5	0	0	0	0	0	0	0	0	0	0	0	0	0.60) 13.3
Bare Substrate																			
Bare ground			0	0	0	0	30	0	0	0	0	0	0	0	0	35	0	4.33	3 13.3
Thatch/Detritus			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00	0.0
Water			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00	0.0
Total cover, native species			98	96	91	98	50	92	92	96	100	90	85	92	60	55.01	92	85.80)
Total cover, non-native species			2	4	9	2	20	8	8	4	0.01	10	15	8	40	10	8	9.87	/
Tot cov inv spp INCL P. arundinacea			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00	J
Tot cov inv spp EXCL P. arundinacea			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00)
Total cover, all species			100	100	100	100	70	100	100	100	100	100	100	100	100	65.01	100	95.67	·
Performance Standards - not evalua	ted for this reference t	ransect																	

TQ-T2 Restoration	Sample Date(s):	Wetland indic	ator statu	is: 1=0E	3L 2=FA	CW 3=I	FAC 4=I	FACU 5:	=UPL											
Herbaceous Wetland Habitat Unit	6/30/2014		Percen	t Cover																
Species	Origin (N, NN, I)	Wetland Status (1-5)	1	2	3	4	5	6	7	8	9	10	11	12	13	14		Transect Average	% plot occurrence	
Native Herbaceous Species	J J ()))																			
Deschampsia cespitosa	Ν		2 0	15	0	15	0	0	0	40	0	0	0	0	0	0	0	4.7	20.	0
Potentilla anserina	N		1 0		0	0	0		0	0	0	0	1	0	0			0.1	6.	
Juncus effusus	N		2 0	0	0	0	0		0	35	0	0		0	0					
Juncus balticus	N		2 0	0	0	0	0		0	0		0	0	5				0.3		
Unknown Species																				
Invasive Herbaceous Species																				
Phalaris arundinacea L.	1		2 10	5	80	35	80	8	90	5	50	0	0	0	0	0	2	24.3	66.	7
Holcus lanatus	1		3 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.	C
Anthoxanthum odoratum	1		4 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.	C
Non-Native Herbaceous Species																				
Agrostis stolonifera	NN		3 90	75	20	50	20	92	10	20	50	100	99	80	100	100	98	66.9	100.	C
Lotus uliginosus	NN		3 0	0	0	0	0		0	0	0	0	0	0	0				0.	C
Schedonorus arundinaceus	NN		3 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.	C
Bare Substrate																				
Bare ground			0	5	0	0	0	0	0	0	0	0	0	15	0	0	0	1.3	13.	3
Thatch/Detritus			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.	0
Water			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.	C
Total cover, native species			0	15	0	15	0	0	0	75	0	0	1	5	0			7.4		
Total cover, non-native species			90	75	20	50	20	92	10	20	50	100	99	80	100	100		66.9		
Tot cov inv spp INCL P. arundinacea			10	5	80	35	80	8	90	5	50	0	0	0	0	0	2	24.3		
Tot cov inv spp EXCL P. arundinacea	a		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0		
Total cover, all species			100	95	100	100	100	100	100	100	100	100	100	85	100	100	100	98.7		
Performance Standards	Threshold		1	2	3	4	5	6	7	8	9	10	11	12	13	14		Transect average	Standard Error	Standar Met?
Standard 7.6	Invasive Cover =<	: 30%	10.0	5.0	80.0	35.0	80.0	8.0	90.0	5.0	50.0	0.0	0.0	0.0	0.0	0.0	2.0	24.3	8.	7 Yes
Standard 7.7	At least 3 of speci	es documented	in reference	ce marsh	n occur i	n projec	t area													
	Native species progressing towards reference conditions (measured at																			
Standard 7.8	60%)		0.0	15.0	0.0	15.0	0.0	0.0	0.0	75.0	0.0	0.0	1.0	5.0	0.0	0.0	0.0	7.4	5.	ON O
	Plant cover is progressing toward reference conditions			07.0	100.5	100 5			100.5					0- 6	100 -	100 5				
Standard 7.9	(94.8%)		100.0	95.0	100.0	100.0	100.0		100.0	100.0	100.0	100.0	100.0	85.0				98.7		O NO
Standard 7.10	Moisture Index < 3	3.0	2.9	2.8	2.2	2.5	2.2	2.9	2.1	2.2	2.5	3.0	3.0	2.9	3.0	3.0	3.0	2.7	0.	1 Yes

TQ-T3 Restoration	Sample Date(s):	Wetland indic	ator stat	tus: 1=	OBL 2:	=FACW	/ 3=FA0	C 4=FA	\CU 5=	UPL										
Herbaceous Wetland Habitat Unit	6/30/2014		Percer	nt Cove	ər															
		Wetland																Transect	% plot	
Species	Origin (N, NN, I)	Status (1-5)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Average	occurrence	
Native Herbaceous Species																		-		
Eleocharis palustris	N		1 0	0	0	0	9	0	0	40	0	0	0	0	0	0	0	3.3	13.3	3
Potentilla anserina	N		1 0	0	0	2	15	10	0	0	25	30	35	8	45	10	40	14.7	66.7	7
Achillea millefolium	N		1 0	0	0	0		0		0		0		0	0		5		20.0	2
Galium trifidum	N		2 0	4	0	0	0	0	0	0	0	0	0	2	0		0			
Typha latifolia	Ν		1 0	0	0	0	1	0	5	55	15	25	40	0	20	60	0			
Unknown Species																				
Invasive Herbaceous Species																				
Phalaris arundinacea L.	I		2 100	96	100	98	75	90	95	5	60	45	17	90	35	10	55	64.7	100.0	D
Holcus lanatus	I	:	3 0	0		0		0		0		0	0	0	0		0			
Anthoxanthum odoratum	I			0		0		0				0		0	0		0			
Non-Native Herbaceous Species																				
Agrostis stolonifera	N		3 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	C
Lotus uliginosus	N		3 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	C
Schedonorus arundinaceus	N	:	3 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0) 0.0	C
Bare Substrate																				
Bare ground			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	C
Thatch/Detritus																				
Water																				
Total cover, native species			0	4	0	2	25	10	5	95	40	55	83	10	65	90	45	35.3	3	
Total cover, non-native species			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0)	
Tot cov inv spp INCL P. arundinacea			100	96	100	98	75	90	95	5	60	45	17	90	35	10	55	64.7	•	
Tot cov inv spp EXCL P. arundinacea			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0)	
Total cover, all species			100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100.0)	
Performance Standards	Threshold		1	2	3	4	5	6	7	8	9	10	11	12	13	14		Transect average	Standard Error	Standar Met?
Standard 7.6	Invasive Cover =< 30%			-	100.0	-	75.0	•	•	-	60.0		17.0				55.0			0 NO
Standard 7.7	At least 3 of species do							00.0	00.0	0.0	00.0	-10.0		00.0	00.0	10.0	00.0	04.7	0.0	
Standard 7.8	Native species progressing towards reference conditions (measured at 60%)		0.0	4.0	0.0	2.0	25.0	10.0	5.0	95.0	40.0	55.0	83.0	10.0	65.0	90.0	45.0	35.3	9.0) YES
Standard 7.9	Plant cover is progressing toward reference conditions (94.8%)		100.0		100.0									100.0						D YES
Standard 7.10	Moisture Index < 3.0		2.0	2.0						1.1				1.9			1.7			YES

TQ-T4	Sample Date(s):	Wetland indicat	or stat	tus: 1=	=OBL 2	2=FA	CW 3	=FAC	4=FA	CU 5	=UPL									
Herbaceous Wetland Habitat Unit	6/30/2014		Perce	nt Cov	/er															
Species	Origin (N, NN, I)	Wetland Status (1-5)	1	2	3	4	5	6	7	[,] 8	9	10	11	12	13	14	15	Transect Average	% plot occurrence	
Native Herbaceous Species	eg (,, .)	(,		_														,		
Deschampsia cespitosa	N	2	0	50	0	0	8	5	0	0	0	0	0	5	0	3	4	5.0	40.0)
Eleocharis palustris	N	1	0			0	0		0					0						
Carex lynbyei	N	1	5			0	62		0					0						
Juncus effusus	N	2	0				02		0											
Galium trifidum	N	2	0			0	0		0					0						
Juncus balticus	N	2					0		0		-	-		-		0				
bulleus balleus			00	00	0	0	0	15	0		U	20	00	00	50	0	00	27.0	,	,
Unknown Species																				
Invasive Herbaceous Species																				
Phalaris arundinacea L.	1	2	0	0	0	0	0	0	0	0	0	0	5	5	0	0	40	3.3	3 20.0)
Holcus lanatus	I	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0.0	0.0)
Anthoxanthum odoratum	1	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0.0	0.0)
Non-Native Herbaceous Species																				
Agrostis stolonifera	NN	3	15	11	35	10	0	35	1	25	35	10	50	0	5	3	C	15.6	80.0)
Lotus uliginosus	NN	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0.0	0.0)
Schedonorus arundinaceus	NN	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0.0	0.0)
Bare Substrate																				
Bare ground			0	0	0	5	30	0	99	50	0	0	0	0	0	0	C	12.3	26.7	7
Thatch/Detritus																				
Water																				
Total cover, native species			85	89	65	85	70	65	0	25	65	90	45	95	95	98	60	68.8	}	
Total cover, non-native species			15	11	35	10	0	35	1	25	35	10	50	0	5	3	C	15.6	5	
Tot cov inv spp INCL P. arundinacea			0	0	0	0	0	0	0	0	0	0	5	5	0	0	40	3.3	8	
Tot cov inv spp EXCL P. arundinacea			0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0.0)	
Total cover, all species			100	100	100	95	70	100	1	50	100	100	100	100	100	100	100	87.7	•	
																		Transect	Standard	Standard
Performance Standards	Threshold		1	2		4	5	6	7		-			12		14		average	Error	Met?
Standard 7.6	Invasive Cover =< 30%		0.0				0.0		0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	40.0	3.3	2.7	7 YES
Standard 7.7	At least 3 of species d	ocumented in refe	erence	marsh	occur	in pro	oject a	area												
	Native species progressing towards reference conditions																			
Standard 7.8	(measured at 60%) Plant cover is progressing toward reference conditions		85.0	89.0	65.0	85.0	70.0	65.0	0.0	25.0	65.0	90.0	45.0	95.0	95.0	97.5	60.0	68.8		2 YES
Standard 7.9	(94.8%)		100.0	100.0	100.0	95.0	70.0	100.0	1.0	50.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0			
Standard 7.10	Moisture Index < 3.0		2.1	2.1	1.7	2.1	1.1	1.9	3.0	2.5	1.7	1.4	2.5	2.0	2.1	1.1	2.0	1.9		YES

Headse count Origin (N, N) Mature (N) Normal	TQ-T6	Sample Date(s):	Wetland indi	cator sta	tus: 1	=OBL 2	=FACV	V 3=FA	C 4=FA	CU 5=U	PL										
Species Origin (N, NR, I) Status (1-5) I Z A S A S A S A S A S A S A S A S A S A S A S A S A S A S A S A S A S A S A S A A S A A S A C	Herbaceous Wetland Habitat Unit		4	Percent	Cover	•															
Native Herbaceous Species N N N N N N N N N N N N N N N N N N N			Wetland															1	Fransect	% plot	
Deckhamping in explose N I O <th></th> <th>Origin (N, NN, I)</th> <th>Status (1-5)</th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> <th>7</th> <th>8</th> <th>9</th> <th>10</th> <th>11</th> <th>12</th> <th>13</th> <th>14</th> <th>15</th> <th>Average</th> <th>occurrence</th> <th>e</th>		Origin (N, NN, I)	Status (1-5)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Average	occurrence	e
Electoring paluating sources N I 0 0 50 55 0 0 0 0 0 0 0 28 0 30 0 00 0 28 0 30 0 00 0 28 00	Native Herbaceous Species																				
Caree yntysis N 1 0 0 0 2 0 0 0 0 35 5 0 0 2.9 28.7 Durice effusions N 2 34 98 0	Deschampsia cespitosa	N	2	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0.3	26	6.7
Network N 1 0 0 0 8 5 0 0 4 0 5 0 </td <td>Eleocharis palustris</td> <td>N</td> <td>1</td> <td>0</td> <td>0</td> <td>50</td> <td>55</td> <td>0</td> <td>2</td> <td>80</td> <td>15</td> <td>29</td> <td>0</td> <td>30</td> <td>10</td> <td>80</td> <td>47</td> <td>0</td> <td>26.</td> <td>5 66</td> <td>6.7</td>	Eleocharis palustris	N	1	0	0	50	55	0	2	80	15	29	0	30	10	80	47	0	26.	5 66	6.7
Network N 1 0 0 0 8 5 0 0 4 0 5 0 </td <td></td> <td>Ν</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>2</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td></td> <td>0</td> <td></td> <td>35</td> <td>5</td> <td>0</td> <td>0</td> <td>2.9</td> <td>9 26</td> <td>6.7</td>		Ν	1	0	0	0	2	0	0	0			0		35	5	0	0	2.9	9 26	6.7
Nume 2 34 98 40 00 0 0 1 25 0 0 0 15 27.5 000 0 <			1	0																	
Galum Infidum Juncus ballicones N 2 0 0 0 5 35 0			2																		
Junce billous N 2 0 <																					
Typhe latificitie N 1 1 0		N			0	10												15			
Invasive Herbaceous Species I 2 20 0 0 15 0 10 10 10 20 3.5 26.7 Phalaris andinacea L I 3 0					-																
Holess hantus I 3 0 <	Unknown Species																				
Phalenia strundinaces L. I I I I I I I I I I I I I I I I I I	Invasive Herbaceous Species																				
Holeus fanatus I 3 0		1	0	20	0	0	0	15	0	15	^	0	0	0	^	^	2	0	2	5 04	3.7
Anthoxanthum odoratum I 4 0		1			-									-	-						
Non-Native Herbaceous Species Aprestis stolonifera NN 3 0 2 0 2 0 <		1																			
Agrostis stolonifera NN 3 0 2 0 5 5 5 5 12 0 0 35 16 48 20 11.6 73.3 Lots uliginguoss NN 3 0			4		0	0	0	0	0	0	0				0	0	0		0.1		5.0
Low ulignosus NN 3 0																					
Schedonorus arundinaceus NN 3 0 <td>Agrostis stolonifera</td> <td>NN</td> <td>3</td> <td>0</td> <td>2</td> <td>0</td> <td>20</td> <td>5</td> <td>7</td> <td>5</td> <td>5</td> <td>12</td> <td>0</td> <td>0</td> <td>35</td> <td>15</td> <td>48</td> <td>20</td> <td>11.0</td> <td>6 73</td> <td>3.3</td>	Agrostis stolonifera	NN	3	0	2	0	20	5	7	5	5	12	0	0	35	15	48	20	11.0	6 73	3.3
Bare Substrate Image: Substrate <td>Lotus uliginosus</td> <td>NN</td> <td>3</td> <td>0</td> <td>0.0</td> <td>) (</td> <td>0.0</td>	Lotus uliginosus	NN	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0) (0.0
Bare ground Imate (N) Imate (N) <td>Schedonorus arundinaceus</td> <td>NN</td> <td>3</td> <td>0</td> <td>0.0</td> <td>) (</td> <td>0.0</td>	Schedonorus arundinaceus	NN	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0) (0.0
Thatch/Detritus (1)	Bare Substrate																				
Water O <td>Bare ground</td> <td></td> <td></td> <td>45</td> <td>0</td> <td>40</td> <td>5.</td> <td>7 13</td> <td>3.3</td>	Bare ground			45	0	0	0	0	0	0	0	0	0	0	0	0	0	40	5.	7 13	3.3
Total cover, native species Image: Cover and the species	Thatch/Detritus			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0) (0.0
Total cover, non-native species 0 2 0 20 5 7 5 5 12 0 0 35 15 48 20 11.6 Total cover, spp INCL P. arundinacea 20 0 0 15 0 15 0 15 0 <	Water			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0) (0.0
Total cover, non-native species 0 2 0 20 5 7 5 5 12 0 0 35 15 48 20 11.6 Total covinv spp INCL P. arundinacea 20 0 0 15 0 15 0 15 0 16 0	Total cover, native species			35	98	100	80	80	93	80	95	86	100	100	65	85	50	40	79.1	1	
Tot cov inv spp INCL P. arundinacea 20 0 0 15 0 15 0 15 0 2 0 0 2 0 3.6 Tot cov inv spp EXCL P. arundinacea 0																					
Tot cov inv spp EXCL P. arundinacea 0																					
Total cover, all species Image: Cover and and and any and any and any		1 A																			
Performance Standards Threshold 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 average Error Mage Standard 7.6 Invasive Cover =< 30%		•									-										
Performance StandardsThreshold123456789101112131415averageErrorMethodStandard 7.6Invasive Cover =< 30%				55	100	100	100	100	100	100	100	100	100	100	100	100	100				Standard
Standard 7.6 Invasive Cover =< 30% 20.0 0.0 0.0 15.0 0.0 2.0 0.0 0.0 15.0 0.0 2.0 0.0 0.0 3.6 1.8 YE Standard 7.7 At least 3 of species documented in reference marsh occur in project area Image: Cover area	Performance Standards	Threshold		4	-	2		F	F	7			10	44	40	43	4.4				Met?
Standard 7.7 At least 3 of species documented in reference marsh occur in project area Image: Constraint of the species of th			10/	•			-	-			-	•									
Native species progressing towards reference conditions (measured at 60%) 35.0 98.0 100.0 80.0 80.0 93.0 80.0 95.0 86.0 100.0 100.0 65.0 85.0 50.0 40.0 79.1 5.7 YE Plant cover is progressing toward reference conditions and the second state of the										15.0	0.0	2.0	0.0	0.0	0.0	0.0	2.0	0.0	3.0		1.0 125
progressing toward reference conditions		Native species progressing towards reference conditions								80.0	95.0	86.0	100.0	100.0	65.0	85.0	50.0	40.0	79.	1 5	5.7 YES
		progressing toward reference conditions		55.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	60.0	ØV -	3	3 9 YES
																					YES

Tamara Quays Monitoring Report, 2014

P. 58 of 118, 12/1/2014

TQ-T7	Sample Date(s):	Wetland indi	cator s	tatus	: 1=0	BL 2=	FACW	3=FA0	C 4=FA	CU 5=	UPL									
Herbaceous Wetland Habitat Unit	6/30/2014		Perce	ent Co	ver															
		Wetland																Transect	% plot	
Species	Origin (N, NN, I)	Status (1-5)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Average	occurrence	
Native Herbaceous Species		. ,																		
Eleocharis palustris	Ν		1 0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	2.0	6.7	
Potentilla anserina	N						0	0	0		0			0						
Juncus effusus	N		2 0				45	40	95	95	98			65			30			
Galium trifidum	N		2 5					15	0		0			10						
Juncus balticus	N		2 85		17			0	0					0						
Typha latifolia	N						-	0	0					0						
i ypna latiolia			1 0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0.2	. 0.7	
Unknown Species																				
PoaSp	Unknown		0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.1	6.7	
Flasp	UTIKITUWIT		0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.1	0.7	
Invasive Herbaceous Species																				
Phalaris arundinacea L.	1		2 5	5	3	0	25	45	5	3	2	0	5	25	4	10	10	9.8	86.7	
Holcus lanatus	1		3 5						0					23						
Anthoxanthum odoratum			4 0						0					0						
			- 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	
Non-Native Herbaceous Species																				
Agrostis stolonifera			3 0	3	30	0	0	0	0	0	0	0	0	0	0	0	0	2.2	13.3	
Lotus uliginosus			3 0					0	0											
Schedonorus arundinaceus			3 0											0						
			0		0	0	0	0	U	0	0	0	0	0	0	0	0	0.0	0.0	
Bare Substrate																				
Bare ground			0	5	5	0	0	0	0	0	0	0	0	0	0	0	0	0.7	13.3	
Thatch/Detritus			0						0					0						
Water			0				0		0		0			0						
			-					-	-			-	-			-	-			
Total cover, native species			90	47	22	100	45	55	95	95	98	100	95	75	96	90	90	79.5	;	
Total cover, non-native species			0	13	60	0	30	0	0	0	0	0	0	0	0	0	0	6.9)	
Tot cov inv spp INCL P. arundinacea			10	35	13	0	25	45	5	5	2	0	5	25	4	10	10	12.9)	
Tot cov inv spp EXCL P. arundinacea			5		10			0	0		0			0						
Total cover, all species			100				100	100	100		100	100	100	100	100	100	100			
																		Transect	Standard	Standard
Performance Standards	Threshold		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	average		Met?
Standard 7.6	Invasive Cover =< 30%	6	10.0	35.0	13.0	0.0	25.0	45.0	5.0	5.0	2.0	0.0	5.0	25.0	4.0	10.0	10.0	-		YES
Standard 7.7	At least 3 of species d	ocumented in																		
	· ·						1 .7.													
	Native species																			
	progressing towards																			
Oten dend 7.0	reference conditions		00.0	47.0	~~ ~	100.0	45.0	FF 0	05.0	05.0	00.0	100.0	05.0	75.0	00.0	00.0	00.0	70 5		VEO
Standard 7.8	(measured at 60%)		90.0	47.0	22.0	100.0	45.0	55.0	95.0	95.0	98.0	100.0	95.0	15.0	96.0	90.0	90.0	79.5	6.4	YES
	Plant cover is																			
	progressing toward																			
	reference conditions																			
Standard 7.9	(94.8%)												100.0							YES
Standard 7.10	Moisture Index < 3.0		2.1	2.4	2.7	1.7	2.3	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.1	0.1	YES

Appendix 6. Tidal datums for the Salmon River Estuary and nearby NOAA station (Depoe Bay)

Tidal Datums for the Salmon River Estuary

The data in the left two columns of the table below were provided in Coulton *et al* (1995). The data in the right column (elevations relative to the NAVD88 datum) were calculated by our team using the VERTCON conversion of 3.32 ft for this location (<u>http://www.ngs.noaa.gov/cgi-bin/VERTCON/vert_con.prl</u>).

The tid	al datums shown in this table	are derived from monitoring p	erformed at
	approximately Rive	r Mile 2.4 (Mitchell, 1981).	
	Elevation*	Elevation*	Elevation
	feet above MLLW	feet above NGVD	(feet above
Tidal Datum	(meters, MLLW)	(meters, NGVD)	NAVD88)***
MHHW	4.40 (1.34)	4.57 (1.39)	7.89
MHW	3.71 (1.13)	3.87 (1.18)	7.19
MTL	1.90 (0.58)	2.07 (0.63)	5.39
MLW	0.20 (0.06)	0.37 (0.11)	3.69
MLLW	0	0.17 (0.05)	3.49
(NGVD)	**-0.17 (-0.05)	**0.00	3.32

Notes provided in the table in Coulton et al (1995):

* The accuracy of these datums is determined by a comparison of simultaneous observations over a 12-month period is +/- 0.066 foot (+/-0.02 meter) (Swanson, 1974). Error associated with reading the tide staff and the tide chart is at least +/- 0.098 foot (+/- 0.03 meter).

** Review of the original notes by Mitchell indicate an inconsistency in the estimate of the NGVD datum conversion. The correct conversion is given here.

Ref: Mitchell, D.L., 1981, Salt Marsh Re-establishment Following Dike Breaching in the Salmon River Estuary, Oregon, PhD Thesis, Oregon State University, August 21, 1981

*** Elevation relative to NAVD88 calculated by Laura Brophy using VERTCON utility

Tidal datums at Depoe Bay (closest NOAA tide stations)

NOAA's Depoe Bay tide station provides the closest NOAA-calculated tidal datums for this site. The NOAA "Tides and Currents" website displays the Depoe Bay datums relative to NAVD88 and MLLW (<u>http://tidesandcurrents.noaa.gov/datums.html?id=9435827</u>). We used NGS's VERTCON utility to convert the datums to NGVD29 for comparison to USFS plans that use this datum.

Depoe Bay	MLLW-m	MLLW-ft	NGVD29-m	NGVD29-ft	NAVD88-m	NAVD88-ft
НМТ	3.725	12.222	2.520	8.268	3.532	11.588
MHHW	2.511	8.239	1.306	4.285	2.318	7.605
MHW	2.295	7.530	1.090	3.576	2.102	6.897
MTL	1.356	4.449	0.151	0.495	1.163	3.816
MSL	1.346	4.416	0.141	0.463	1.153	3.783
NGVD29	1.205	3.954	0.000	0.000	1.012	3.320
MLW	0.418	1.371	-0.787	-2.582	0.225	0.738
NAVD88	0.193	0.633	-1.012	-3.320	0.000	0.000
MLLW	0.000	0.000	-1.205	-3.954	-0.193	-0.633

Depoe Bay tidal datums (http://tidesandcurrents.noaa.gov/datums.html?id=9435827, 8/20/09):

References

Coulton, K., P. Goodwin, C. Perala, and M. Scott. 1996b. Evaluation of flood management benefits through floodplain restoration on the Willamette River, Oregon, U.S.A. Prepared in portland, OR for the River Network, Portland, OR. Philip Williams and Associates, Ltd.

Appendix 7. Post-project wetland delineation "light" for Tamara Quays Tidal Wetland Restoration Site

Laura Brophy, Green Point Consulting (541) 752-7671, Laura@GreenPointConsulting.com December 1, 2014

Summary

This Appendix describes the post-project wetland delineation conducted at the Tamara Quays tidal wetland restoration site. The delineation mapped tidal wetlands only; the scope did not include mapping of nontidal wetlands, which may extend well beyond the tidal wetland restoration area. Additional information about the project site is found in the effectiveness monitoring report (Brophy and Brown 2014).

As described in Chapter 9 of The Oregon Department of State Lands' Removal-Fill Guide (OR DSL 2012), wetland delineations for compensatory mitigation sites use a "delineation light" method. As stated in the Removal-Fill Guide, "The mitigation monitoring "light" delineation is treated as an amendment to the formal delineation (following OAR 141-90) prepared for the pre-project CWM [compensatory wetland mitigation] site. The delineation light should not repeat any of the background information from the pre-project CWM delineation, except as outlined below."

Following standard practice, the wetland boundary was drawn where tidal wetland hydrology, hydric soils, and hydrophytic vegetation were all present. Soil conditions at the site were disturbed by grading, so we followed guidance from the Western Regional Supplement (U.S. Army Corps 2010) for "Problematic hydric soils" and defined the extent of hydric soils using long-term water level gauge data, as described in the 1987 Manual (Environmental Laboratory 1987). The gauge data (obtained from NOAA's South Beach tide station) are analyzed by NOAA to provide an elevation for biennial tidal inundation (the "50% exceedance elevation"), which defines the limit of tidal wetlands. A second, alternate wetland boundary was also delineated, defined by the extent of hydrophytic vegetation; this alternate boundary was about 1 ft higher (vertically) than the primary boundary. Soils and hydrology were not investigated for the alternate boundary, since it is outside the extent of tidal wetlands (as defined by NOAA analysis), and therefore outside the scope of this project. The alternate boundary may represent locally higher tidal influence, or adjacent areas of nontidal wetlands. The difference in area between the two wetland boundaries is 0.56 ac. Details are provided in **Wetland Determination Methods** below.

Our 2014 wetland delineation was supported by our team's extensive effectiveness monitoring at the site during 2007 and 2009 (baseline period), 2010, 2011, 2012 and 2014 (Brophy 2009, 2010, 2011, 2012; Brophy and Brown, 2014). Effectiveness monitoring includes measurements of tidal hydrology, vegetation, and soils, providing strong support for the wetland status of the area delineated.

Study area

The study area was the Tamara Quays tidal wetland restoration site in the lower Salmon River estuary. The restoration site was formerly an RV park and as a result has many small tax lots (Map W1). This delineation's scope was to identify and map tidal wetlands which were restored as a result of tidal reconnection actions taken at the site. The scope did not include mapping of nontidal wetlands. Therefore, we established the delineation study area boundary at the (14.8 ft) (4.5 m) contour (NAVD88), which is about 3 ft above Highest Measured Tide (HMT) for the nearest NOAA tide station (Depoe Bay, where HMT is 11.6 ft NAVD88). Based on information obtained from USFS, aerial photo interpretation, and a LiDAR elevation dataset obtained from USFS, we were certain that this boundary was sufficiently high to include the entire tidal wetland area. We established the location of the 4.5 m contour in 2009 using a contour map provided by USFS, built from a USFS LiDAR elevation dataset. For this delineation, we extended the study area boundary to include the former dike area, now lowered to tidal marsh elevation. The study area boundary and site features are shown in Map W2.

The entire northeast side of the site (east bank of Rowdy Creek) was graded during restoration (Map W3). A broad area (approximately the historic extent of tidal marsh on Rowdy Creek's east bank) was graded to an elevation of 8 ft NAVD88 to restore high marsh. The slope was then graded up to the northeast to blend into uplands.

On the west bank of Rowdy Creek, grading was limited to removal of the perimeter dike, filling of the bypass canal, and removal of the bypass canal levee. Brophy 2010 contains further details on site characteristics. The graded area on the west bank of Rowdy Creek is inside the lines marked "-G-G-G-G'" in Map W3.

Wetland determination methods

This wetland determination followed the methods outlined in the 2010 Regional Supplement to the Corps of Engineers Wetland Delineation Manual (U.S. Army Corps of Engineers 2010) and the 1987 Corps delineation manual (Environmental Laboratory 1987).

Since soils at the site were disturbed by grading, we used hydrologic data to determine the extent of hydric soils. The general approach is described on page 115 of the 2010 Supplement:

Procedure 4(e): Using gauge data, water-table monitoring data, or repeated direct hydrologic observations (see item 5a in the procedure for Problematic Hydrophytic Vegetation in this chapter), determine whether the soil is ponded or flooded, or the water table is 12 in. (30 cm) or less from the surface, for 14 or more consecutive days during the growing season in most years (at least 5 years in 10, or 50 percent or higher probability) (U.S. Army Corps of Engineers 2005). If so, then the soil is hydric. Furthermore, any soil that meets the NTCHS hydric soil technical standard (NRCS Hydric *Soils Technical Note 11, http://soils.usda.gov/use/hydric/ntchs/tech_notes/index.html) is hydric.*

A more specific approach, tailored to tidal wetland gauge data, is provided in the 1987 Corps delineation manual (pp 43-44; Part IV, Section B, step 8(i)(1)). We used this approach to determine the maximum elevation of tidal wetland hydrology for Tamara Quays:

For the routine approach, determine the highest water level elevation reached during the growing season for each of the most recent 10 years of gage data. Rank these elevations in descending order and select the fifth highest elevation. Combine this elevation with the mean sea level elevation of the gaging station to produce a mean sea level elevation for the highest water level reached every other year. Compare the resulting elevations reached biennially with the project area elevations. If the water level elevation exceeds the area elevation, the area is inundated during the growing season on average at least biennially.

The 1987 manual procedure defines the elevation that has a 50% probability of inundation each year; it is therefore conceptually the same as the 50% exceedance level (50% exceedance elevation) provided by NOAA at its Extreme Water Level website (<u>http://tidesandcurrents.noaa.gov/est/</u>). At that website, NOAA states: "On average, the 1% level (red) will be exceeded in only one year per century, the 10% level (orange) will be exceeded in ten years per century, and the 50% level (green) will be exceeded in fifty years per century."

The 50% exceedance elevation was selected by the State of Oregon as the boundary for updated mapping of tidal wetlands on Oregon's outer coast in 2014 (Lanier *et al.* 2014). The 50% exceedance elevation is also used as one of two alternate methods for defining the wetted area for tidal wetland restoration projects in the Columbia River estuary (ERTG 2013). Use of this elevation to define the upper boundary of tidal wetland hydrology was approved by Department of State Lands staff (Dana Hicks, personal communication, 8/7/14).

The nearest NOAA station for which NOAA provides Extreme Water Level data is South Beach (station 9435380). The 50% exceedance elevation at the South Beach station is 10.43 ft (3.18 m) NAVD88 (<u>http://tidesandcurrents.noaa.gov/est/est_station.shtml?stnid=9435380</u>).

Following the above approach, our field preparation and field procedures for mapping the wetland boundary at Tamara Quays were as follows:

- 1. USFS provided an as-built survey in CAD format. We used the "warp" geoprocessing function in ArcGIS 10.2 to georeference the CAD file in the GIS, matching features in the survey to landmarks on USFS aerial orthophotos and 2009 NAIP aerial imagery.
- 2. We located and extracted the 10.5 ft (3.2 m) NAVD88 contour from the USFS as-built survey, creating a tidal wetland hydrology boundary line in the GIS. We also printed this contour on maps for field use. (The 10.5 ft contour was the closest contour in the survey to the 10.43 ft [3.18 m] 50% exceedance elevation.) This contour represented the extent of tidal wetland hydrology and hydric soils (as described above).

- 3. In the field, we examined plant communities for the transition from hydrophytic to nonhydrophytic vegetation. We flagged the line that marked the extent of hydrophytic vegetation and measured horizontal and vertical positions at 64 points along that line using RTK-GPS, ensuring accuracy meets DSL standards. (Measured accuracy was 2 cm horizontal and 5 cm vertical.)
- The results of step 3 showed that the hydrophytic vegetation boundary was almost always higher than the 50% exceedance elevation, by about 1 ft (0.30 m) vertically and 20-40 ft (6.1 - 12.2 m)horizontally. (Average elevation of this boundary was 11.4ft [3.47 m] NAVD88.)

We then created two wetland boundaries as follows:

- Primary wetland boundary: This boundary was defined using the standard three jurisdictional criteria. It follows the 10.5 ft (3.2 m) NAVD88 contour from the USFS asbuilt survey, except where the hydrophytic vegetation boundary fell below that elevation, in which case the wetland boundary followed the vegetation boundary. Within this boundary, sample points met all three jurisdictional criteria (hydrology, soils, and vegetation) and are jurisdictional wetlands. This boundary is available as a shapefile (TQ_WL_polygon_OSP_20141201_LSB.shp).
- 2. Alternate wetland boundary: At the request of the Department of State Lands, we also drew an alternate wetland boundary at the hydrophytic vegetation boundary. As described above, this boundary was higher than the primary wetland boundary. Hydrology and soils were not evaluated for the area between the two boundaries, since this area lies above the 50% exceedance elevation and therefore does not meet the definition of a tidal wetland (and therefore is outside the scope of this delineation). There are three possible interpretations of the hydrophytic vegetation boundary: 1) local tidal hydrology may reach higher than predicted by the South Beach NOAA station; 2) this line may represent the additional extent of nontidal wetlands adjacent to the tidal wetlands; or 3) hydrophytic vegetation may be present in these areas without accompanying wetland hydrology or hydric soils. This boundary is available as a shapefile (TQ_hydrophytic_veg_polygon_OSP_20141130_LSB.shp).

Digital elevation models (DEMs) built from LIDAR data were not used for determination of wetland boundaries or other post-restoration site elevations, for two reasons:

- 1. The most recent available LIDAR data for Tamara Quays are from prior to restoration, so they do not reflect grading at the site; and
- DEMs built from LIDAR data generally have insufficient accuracy for on-site delineation work, since elevations can vary by 1 to 2 ft (0.3 – 0.6 m) due to vegetation interference in Oregon tidal wetlands (Ewald 2013).

Wetland description and classification

The following wetland description and classification applies to the area defined by the primary wetland boundary. Total wetland area was 14.83 ac (6.00 ha). (The alternate wetland boundary was 0.56 ac larger, totaling 15.39 ac [38.03 ha].) The wetland boundary followed the site's

topographic contours closely. All wetlands delineated were tidal; the majority of the site was occupied by emergent tidal marsh at an elevation slightly above Mean Higher High Water, which thus floods on higher high tides or during spring tide cycles. Forested tidal wetlands in the ungraded area on the west side of the site are at similar or slightly higher elevations. Water quality monitoring conducted by the Salmon Drift Creek Watershed Council indicated that salinities were brackish in the dry season, so these wetlands were classified in the Estuarine system of the Cowardin classification, specifically irregularly-flooded estuarine emergent wetlands (E2EMP) and irregularly-flooded estuarine forested wetlands (E2FOP). A few low areas along the banks of Rowdy Creek were regularly inundated (E2EMN). In the new, federallymandated Coastal and Marine Ecosystem Classification System (CMECS), these wetlands were classified as *Estuarine Coastal* in the Aquatic Component and *Brackish Emergent Tidal Marsh* and *Brackish Tidal Forest/Woodland* in the Biotic Component.

As described above, we also delineated an alternate wetland boundary, defined by the extent of hydrophytic vegetation. This boundary was higher than the 50% exceedance elevation, by about 1 ft (0.30 m) vertically and 20-40 ft (6.1 - 12.2 m) horizontally. (Average elevation of this boundary was 11.4ft [3.47 m] NAVD88.) Possible interpretations of the wetland status and types present in the area within this boundary, but above the primary wetland boundary, are listed in "Alternate wetland boundary" above.

Sample locations

The wetland boundary was clear and abrupt at the site (see photos in Sub-Appendix 2), and vegetation patterns followed topographic contours closely. Given the clear topographic gradients at the site, only a few field sampling plots were needed. Sampling was conducted at seven plots at the site (Map W4; Photos 1-7, Sub-Appendix 2). Six of the seven plots were contained within two transects (TQ T1 and TQ T2). Transect 1 was placed at a location typical of the site's wetland-to-upland gradient, while Transect 2 examined an area of greater complexity.

In the vegetation descriptions below, we use the term "hydrophytic vegetation boundary" rather than "wetland boundary." This is because the tidal wetland boundary was defined by tidal wetland hydrology as described above, but hydrophytic vegetation extends somewhat farther upslope.

Across most of the east side of the site and at TQ T1, the transition from hydrophytic vegetation to non-hydrophytic vegetation was characterized by a shift from strongly dominant soft rush (*Juncus effusus*, as at TQ T1 P1) to herbaceous vegetation dominated by a mix of FAC and FACW species, typically reed canarygrass (*Phalaris arundinacea*) mixed with common velvetgrass (*Holcus lanatus*) and other FAC to FACU grasses (TQ 1 P2), plus subdominant Himalayan blackberry (*Rubus armeniacus*). In many areas, red alder (*Alnus rubra*) and Scots broom (*Cytisus scoparius*) were codominant just above the hydrophytic vegetation boundary.

At TQ T2, the transition from hydrophytic to non-hydrophytic vegetation was more complex: a narrow band of stunted FAC grasses (*Agrostis capillaris* and *Holcus lanatus*, see TQ T2 P2) and a

patch of Douglas' spiraea (*Spiraea douglasii*, TQ T2 P3) intervened between the typical soft rush-dominated tidal wetlands (TQ T2 P1) and the adjacent uplands (TQ T2 P4). The band of stunted grasses is probably due to compaction during grading.

Wetland determination data sheets for the sample plots are attached in Sub-Appendix 3.

Wetland boundary and plot mapping method and accuracy

Plot mapping method

Sample plot positions and elevations were measured using RTK-GPS. The specific equipment and methods used are: Spectra Precision ProMark 220 GNSS Receiver equipped with an Ashtech ASH111661 GNSS Survey Antenna running the Spectra Precision FASTSurvey (version 4.1.11) data collector software. Measurements were differentially corrected in real time using the Oregon Realtime Correction Network (ORGN). According to FGDC Geospatial Positioning Accuracy Standards, the GPS data tested 0.016 meters horizontal accuracy and 0.051 meters vertical accuracy at 95% confidence level.

Wetland boundary mapping methods

The wetland boundary in Maps W4 and W5 was drawn using as-built survey data provided by USFS, as described above. Unfortunately, no metadata or accuracy information was provided by USFS for the as-built survey. However, data from our RTK-GPS elevation measurements at the site suggest the data from USFS were accurate. Metadata for this wetland boundary are provided in Sub-Appendix 4.

For the hydrophytic vegetation boundary (alternate wetland boundary shown in Maps W6 and W7), RTK-GPS data were collected using methods described in Sub-Appendix 4 and included with the shapefile. According to FGDC Geospatial Positioning Accuracy Standards, the GPS data tested 0.016 meters horizontal accuracy and 0.051 meters vertical accuracy at 95% confidence level.

Dates of field investigation

Wetland delineation was conducted on September 11 and September 23, 2014.

Precipitation on or prior to field investigation

Weather was sunny and dry during the field investigation.

Results and conclusions

The entire compensatory mitigation site meets jurisdictional wetland criteria. The Cowardin classification for the wetlands is predominantly irregularly-flooded estuarine emergent wetland

(E2EMP), with irregularly-flooded estuarine forested wetland along the site's west edge (E2FOP).

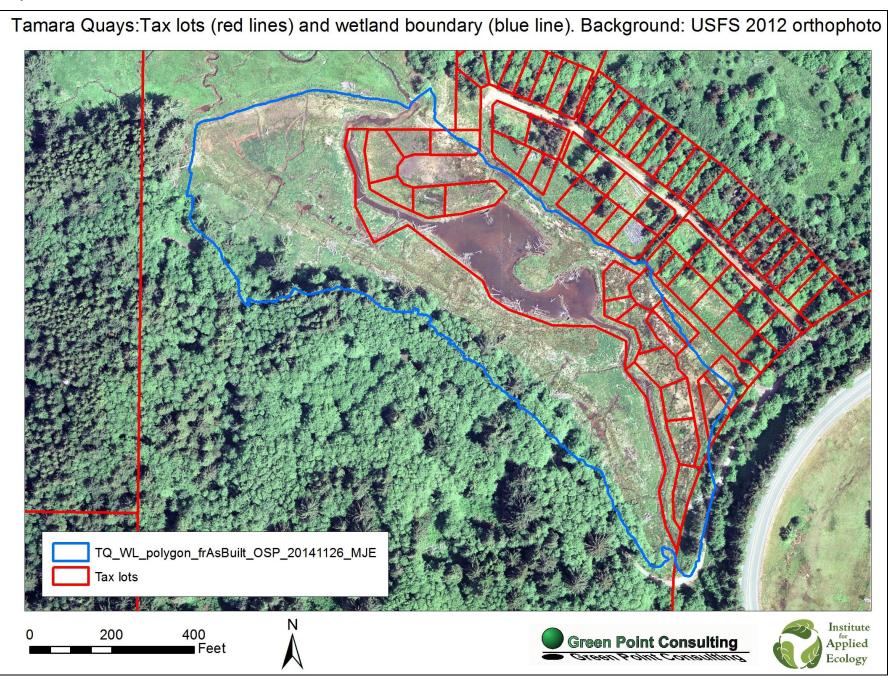
Disclaimer

This report documents the investigation, best professional judgment and conclusions of the investigator. It is correct and complete to the best of my knowledge. It should be considered a Preliminary Jurisdictional Determination of wetlands and other waters and used at your own risk unless it has been reviewed and approved in writing by the Oregon Department of State Lands in accordance with OAR 141-090-0005 through 141-090-0055.

References

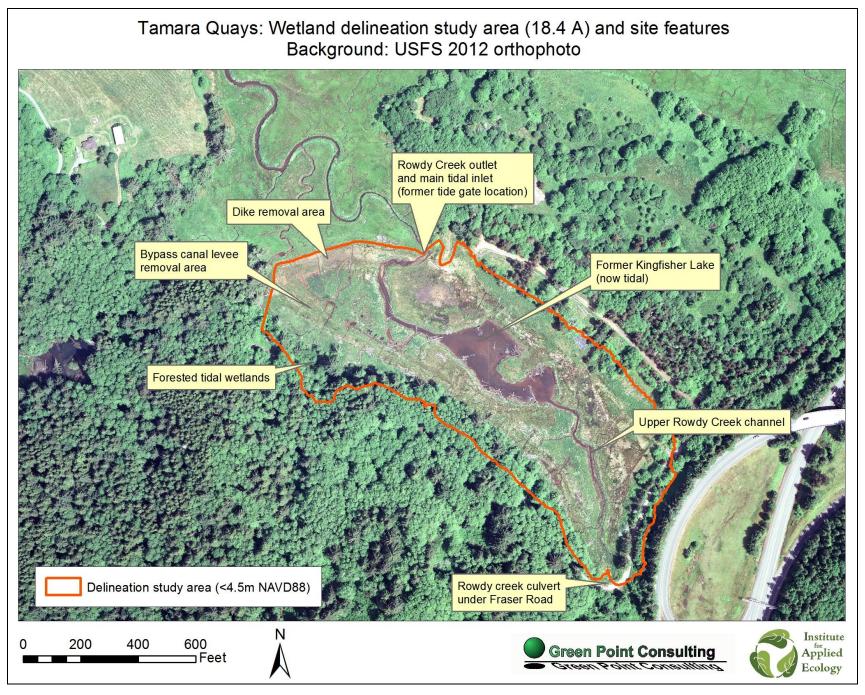
Brophy, L.S., and L.A. Brown. 2014. 2014 Monitoring Report: Tamara Quays Tidal Wetland Restoration. Green Point Consulting and the Estuary Technical Group, Institute for Applied Ecology, Corvallis, OR.

Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. Technical report Y-87-1, US Army Engineer Waterways Experiment Station, Vicksburg, MS.


ERTG (Expert Regional Technical Group). 2013. ERTG Analysis of Water Levels for Site Delineation in Tidal-Dominated Regions. ERTG 2012-01, Rev 1, prepared for the Bonneville Power Administration, U.S. Army Corps of Engineers, and NOAA Fisheries. Portland, Oregon. Available from http://cbfish.org/ERTG.

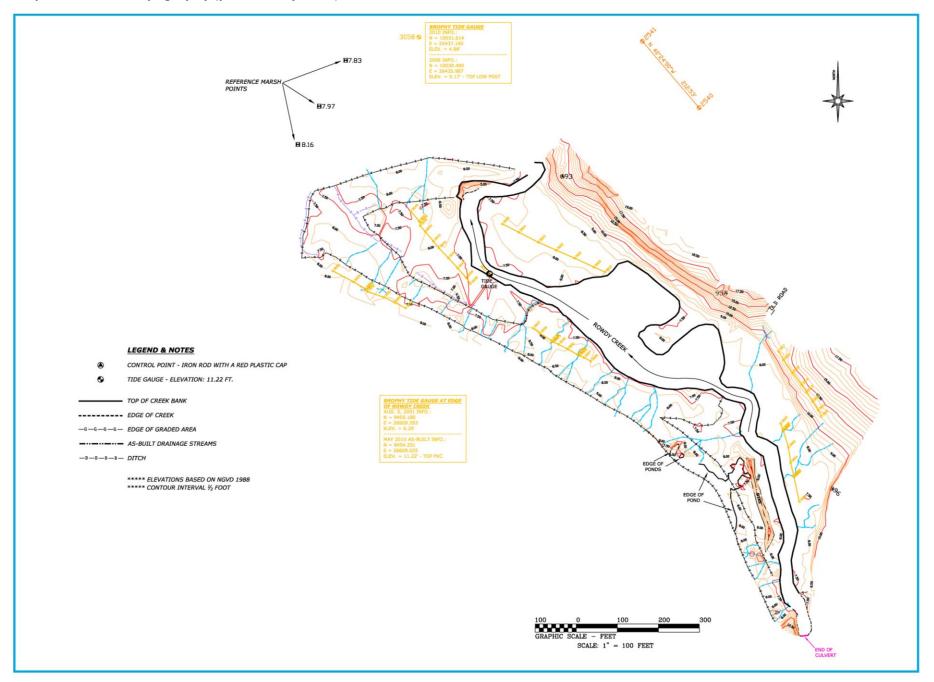
Ewald, M.J. 2013. Where's the ground surface? Elevation bias in LIDAR-derived digital elevation models due to dense vegetation in Oregon tidal marshes. Master's thesis, Oregon State University. Accessed 3/12/14 at <u>http://hdl.handle.net/1957/45127</u>.

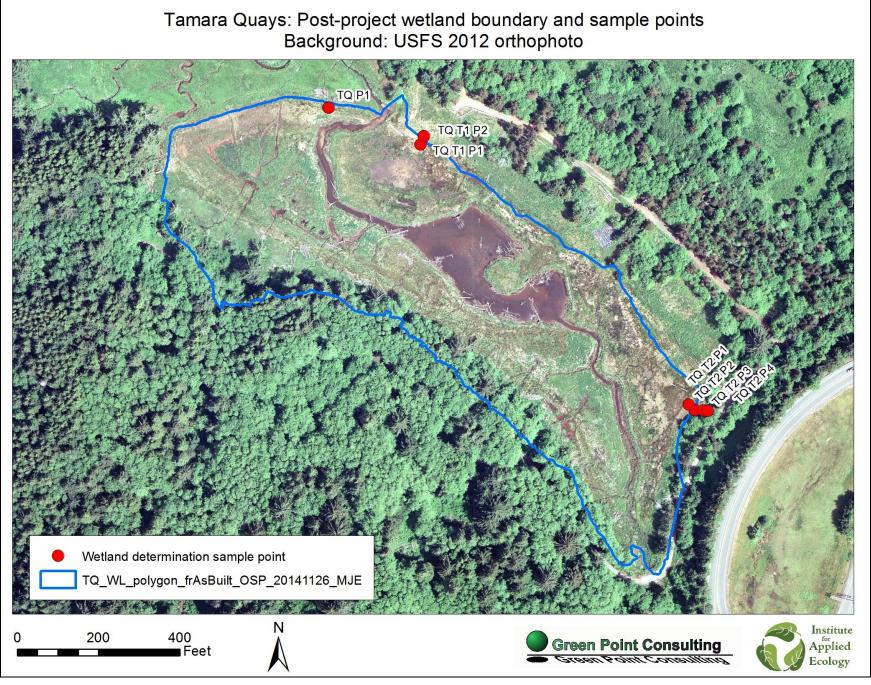
Lanier, A., R. Dana, T. Haddad, L. Mattison, and L. Brophy. 2014. Generating the approximate maximum extent of Oregon tidal wetlands using exceedance water level probability contours. Appendix A in Lanier, A. T. Haddad, L. Mattison, and L. Brophy. (2014): Core CMECS GIS processing methods, Oregon Estuary Project of Special Merit. Oregon Coastal Management Program, Oregon Department of Land Conservation and Development, Salem, OR. Accessed 11/30/14 at http://www.coastalatlas.net/documents/cmecs/EPSM_CoreGISMethods.pdf.


U.S. Army Corps of Engineers. 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Version 2.0), ed. J. S. Wakeley, R. W. Lichvar, and C. V. Noble. ERDC/EL TR-10-3. Vicksburg, MS: U.S. Army Engineer Research and Development Center. Accessed 11/30/14 at <u>http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1046494.pdf</u>. Sub-Appendix 1. Maps (see following pages)

Map W1. Tax lots

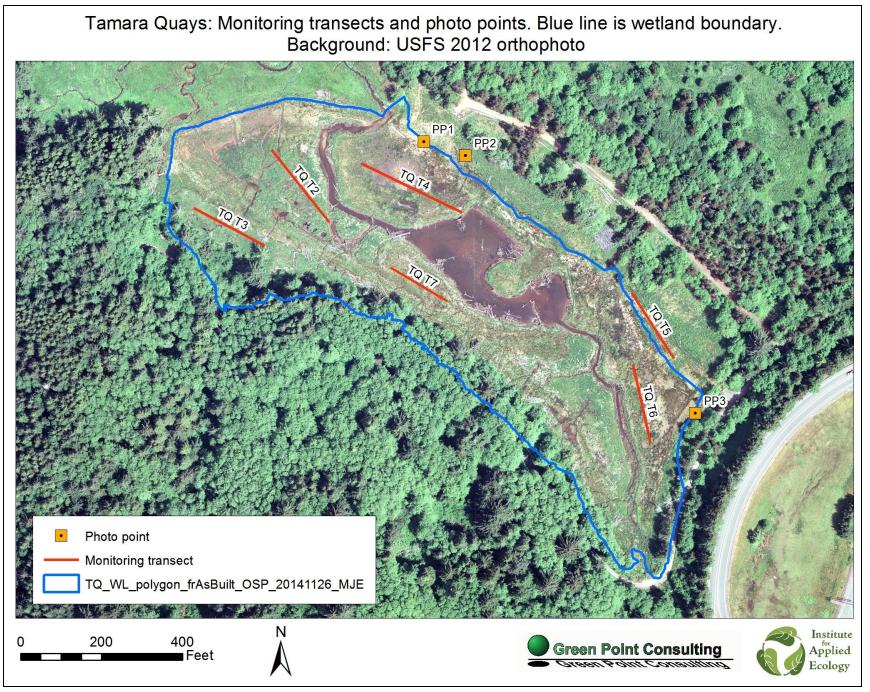
P. 9 of 57, 12/1/2014


Map W2. Study area boundary and site features

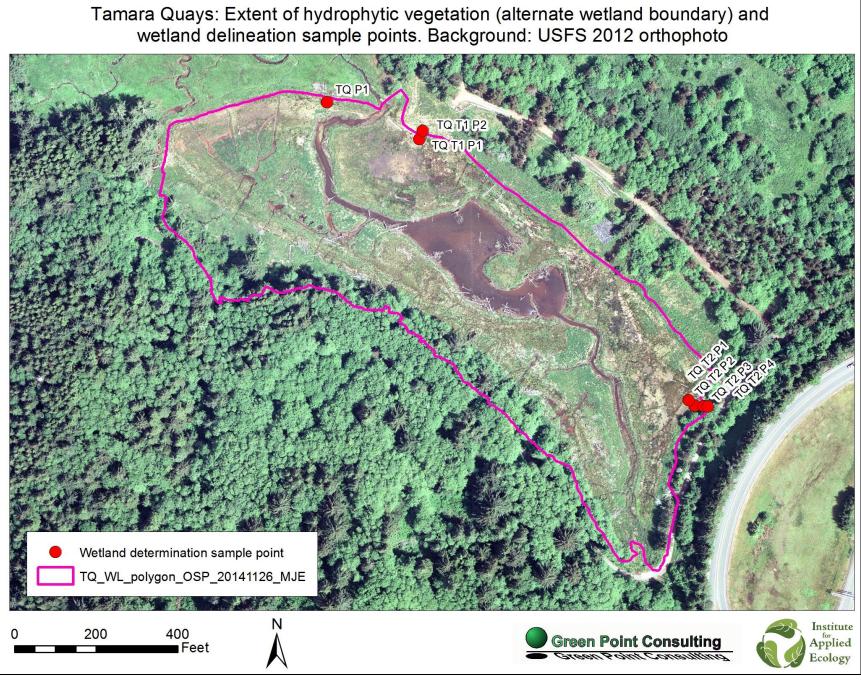

Tamara_Quays_Post-Project_Wet-Delin_FINAL_20141201.docx

P. 10 of 57, 12/1/2014

Map W3. As-built topography (provided by USFS)

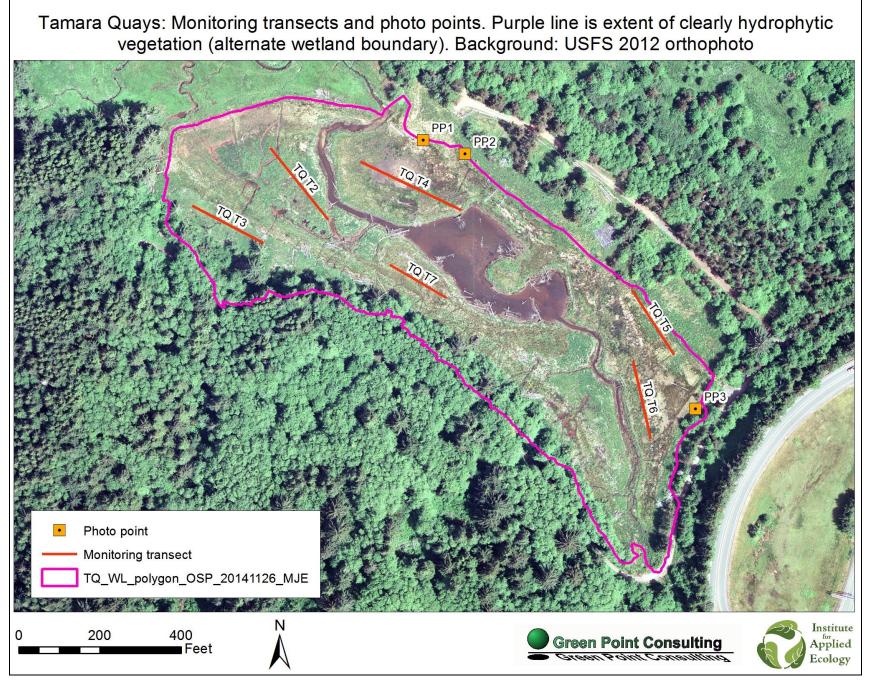


P. 11 of 57, 12/1/2014


Tamara_Quays_Post-Project_Wet-Delin_FINAL_20141201.docx

P. 12 of 57, 12/1/2014

Tamara_Quays_Post-Project_Wet-Delin_FINAL_20141201.docx


Map W6. Extent of hydrophytic vegetation (alternate wetland boundary), and wetland determination sample points

Tamara_Quays_Post-Project_Wet-Delin_FINAL_20141201.docx

P. 14 of 57, 12/1/2014

Map W7. Extent of hydrophytic vegetation (alternate wetland boundary), with monitoring transects and photo points

Tamara_Quays_Post-Project_Wet-Delin_FINAL_20141201.docx

P. 15 of 57, 12/1/2014

Sub-Appendix 2. Photos

Photo 1. TQ P1, looking northwest towards Cascade Head, 9/11/14

Photo 2. TQ T1 P1, looking west, 9/11/14

Photo 3. TQ T1 P2, looking northwest, 9/11/14

Photo 4. TQ T2 P1, looking north, 9/23/14

Photo 5. TQ T2 P2, looking southwest, 9/23/14

Photo 6. TQ T2 P3, looking northwest, 9/23/14

Photo 7. TQ T2 P4, looking southwest, 9/23/14

Photo 8. Typical soft rush (foreground) and common cattail (background) communities in high tidal marsh at Tamara Quays, 7/1/14. Photo was taken near effectiveness monitoring transect TQ T5, looking northwest.

Photo 9. Creeping bentgrass – Baltic rush brackish tidal marsh association, ungraded area in northwest portion of Tamara Quays, 7/1/14. Photo was taken from the former dike location looking southeast towards effectiveness monitoring transect TQ T2.

Photo 10. Photo Point 1 (PP1 in Map W5), looking east-southeast towards PP2, 9/11/14

Photo 11. Photo Point 2 (PP2 in Map W5), looking SE along the hydrophytic vegetation boundary. The primary wetland boundary is downslope to the right, in dense *Juncus effusus*.

Photo 12. Photo Point 3 (PP3 in Map W5), looking east along transect TQ T2, 9/23/14. TQ T2 P1 is in the foreground. The primary wetland boundary is in the light band of grassy vegetation in the middle ground.

Sub-Appendix 3. Wetland determination datasheets (see following pages)

WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

Project/Site:	Tama	ara Quays			City/C	ounty:	Lincolr	า		Samp	ling Date:	9/11/14	4		
Applicant/Owr	ner:	USFS					State:	OR	Sampling P	oint:	TQ P1				
Investigator(s)	: L	aura Broph	ıy		Se	ction, T	ownship,	Range:	T6S R11V	/ Sec 2	25				
Landform (hills	slope,	terrace, etc	:.):	Tidal floodp	lain	Lo	cal relief	(concave	convex, no	ne):	slightly con	vex	Slope (%):	<19	%
Subregion (LR	R):	LRR A			Lat:	49859	04.552	Long:	422806.50)7	Datum:	NAD83	B, meters (UT	TM Zo	one 10N)
Soil Map Unit	Name:	Coquill	e silt	loam, 0 to 1	% slope	es			NW	l classi	fication:	E2EMP			
Are climatic / ł	nydrolo	gic conditi	ons c	on the site typ	oical for	this time	e of year	? Yes	X No	(If no	o, explain in	Remark	s.)		
Are Vegetation	า	, Soil	Х	, or Hydrolo	ду	signif	icantly di	sturbed?	Are "Norr	nal Cir	cumstances	" presen	t? Yes X		No
Are Vegetation	ר <u> </u>	, Soil		, or Hydrolo	ду	natur	ally probl	ematic?	(If	needeo	d, explain an	ny answe	ers in Remarl	ks.)	

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes X No Yes X No Yes X No	Is the Sampled Area within a Wetland?	Yes _	X No	
Remarks: See Remarks in Soils and	nd Hydrology sections				

VEGETATION – Use scientific names of plants.

	Absolute	Dominant	Indicator	Dominance Test worksheet:
<u>Tree Stratum</u> (Plot size:) 1.	<u>% Cover</u>	Species?	<u>Status</u>	Number of Dominant Species That Are OBL, FACW, or FAC: 1 (A)
				Total Number of Dominant
2 3				Species Across All Strata: 1 (B)
4.				Percent of Dominant Species That Are OBL, FACW, or FAC: 100 (A/B)
		= Total Cove	ər	
Sapling/Shrub Stratum (Plot size: 2m)				Prevalence Index worksheet:
	1	Ν	NOL	Total % Cover of: Multiply by:
2				OBL species <u>1.5</u> x 1 = <u>1.5</u>
3.				FACW species 90.5 x 2 = 181
4.				FAC species 8 x 3 = 24
5.				FACU species 18 x 4 = 72
	1	= Total Cove	er	UPL species $1 \times 5 = 5$
Herb Stratum (Plot size: 2m)				Column Totals: 119 (A) 284 (B)
1. Juncus effusus	85	Y	FACW	
2. Rubus armeniacus	18	Ν	FACU	Prevalence Index = B/A = 2.39
3. Deschampsia cespitosa	5	Ν	FACW	
	-	N	FAC	Hydrophytic Vegetation Indicators:
4. Holcus lanatus	7	N	170	
 Holcus lanatus Potentilla anserina 	<u> </u>	N N	OBL	1 - Rapid Test for Hydrophytic Vegetation
E Detentille encerine				
5. Potentilla anserina	1	N	OBL	1 - Rapid Test for Hydrophytic Vegetation
 Potentilla anserina Atriplex patula 	1 0.5	N N	OBL FACW	1 - Rapid Test for Hydrophytic Vegetation x 2 - Dominance Test is >50% x 3 - Prevalence Index is ≤3.0 ¹ 4 - Morphological Adaptations ¹ (Provide supporting
 5. Potentilla anserina 6. Atriplex patula 7. Carex lyngbyei 8. Agrostis stolonifera 	1 0.5 0.5	N N N	OBL FACW OBL	1 - Rapid Test for Hydrophytic Vegetation × 2 - Dominance Test is >50% × 3 - Prevalence Index is ≤3.0 ¹ 4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
 Potentilla anserina Atriplex patula Carex lyngbyei Agrostis stolonifera 9. 	1 0.5 0.5 1	N N N	OBL FACW OBL	1 - Rapid Test for Hydrophytic Vegetation x 2 - Dominance Test is >50% x 3 - Prevalence Index is ≤3.0 ¹ 4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet) 5 - Wetland Non-Vascular Plants ¹
 5. Potentilla anserina 6. Atriplex patula 7. Carex lyngbyei 8. Agrostis stolonifera 9	1 0.5 0.5 1	N N N	OBL FACW OBL	1 - Rapid Test for Hydrophytic Vegetation × 2 - Dominance Test is >50% × 3 - Prevalence Index is ≤3.0 ¹ 4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
 Potentilla anserina Atriplex patula Carex lyngbyei Agrostis stolonifera 9. 	1 0.5 0.5 1	N N N N	OBL FACW OBL FAC	1 - Rapid Test for Hydrophytic Vegetation x 2 - Dominance Test is >50% x 3 - Prevalence Index is ≤3.0 ¹ 4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet) 5 - Wetland Non-Vascular Plants ¹ Problematic Hydrophytic Vegetation ¹ (Explain) ¹ Indicators of hydric soil and wetland hydrology must
 5. Potentilla anserina 6. Atriplex patula 7. Carex lyngbyei 8. Agrostis stolonifera 9	1 0.5 0.5 1	N N N N	OBL FACW OBL FAC	1 - Rapid Test for Hydrophytic Vegetation x 2 - Dominance Test is >50% x 3 - Prevalence Index is ≤3.0 ¹ 4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet) 5 - Wetland Non-Vascular Plants ¹ Problematic Hydrophytic Vegetation ¹ (Explain)
5. Potentilla anserina 6. Atriplex patula 7. Carex lyngbyei 8. Agrostis stolonifera 9.	1 0.5 0.5 1	N N N N	OBL FACW OBL FAC	1 - Rapid Test for Hydrophytic Vegetation x 2 - Dominance Test is >50% x 3 - Prevalence Index is ≤3.0 ¹ 4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet) 5 - Wetland Non-Vascular Plants ¹ Problematic Hydrophytic Vegetation ¹ (Explain) ¹ Indicators of hydric soil and wetland hydrology must
5. Potentilla anserina 6. Atriplex patula 7. Carex lyngbyei 8. Agrostis stolonifera 9.	1 0.5 0.5 1	N N N N	OBL FACW OBL FAC	1 - Rapid Test for Hydrophytic Vegetation x 2 - Dominance Test is >50% x 3 - Prevalence Index is ≤3.0 ¹ 4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet) 5 - Wetland Non-Vascular Plants ¹ Problematic Hydrophytic Vegetation ¹ (Explain) ¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
5. Potentilla anserina 6. Atriplex patula 7. Carex lyngbyei 8. Agrostis stolonifera 9.	1 0.5 0.5 1	N N N = Total Cove	OBL FACW OBL FAC	1 - Rapid Test for Hydrophytic Vegetation x 2 - Dominance Test is >50% X 3 - Prevalence Index is ≤3.0 ¹ 4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet) 5 - Wetland Non-Vascular Plants ¹ Problematic Hydrophytic Vegetation ¹ (Explain) ¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
5. Potentilla anserina 6. Atriplex patula 7. Carex lyngbyei 8. Agrostis stolonifera 9.	1 0.5 0.5 1 118	N N N = Total Cove	OBL FACW OBL FAC	1 - Rapid Test for Hydrophytic Vegetation x 2 - Dominance Test is >50% x 3 - Prevalence Index is ≤3.0 ¹ 4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet) 5 - Wetland Non-Vascular Plants ¹ Problematic Hydrophytic Vegetation ¹ (Explain) ¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
5. Potentilla anserina 6. Atriplex patula 7. Carex lyngbyei 8. Agrostis stolonifera 9.	1 0.5 0.5 1 118	N N N = Total Cove	OBL FACW OBL FAC	1 - Rapid Test for Hydrophytic Vegetation x 2 - Dominance Test is >50% x 3 - Prevalence Index is ≤3.0 ¹ 4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet) 5 - Wetland Non-Vascular Plants ¹ Problematic Hydrophytic Vegetation ¹ (Explain) ¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. Hydrophytic Vegetation
5. Potentilla anserina 6. Atriplex patula 7. Carex lyngbyei 8. Agrostis stolonifera 9.	1 0.5 0.5 1 118	N N N = Total Cove	OBL FACW OBL FAC	1 - Rapid Test for Hydrophytic Vegetation x 2 - Dominance Test is >50% x 3 - Prevalence Index is ≤3.0 ¹ 4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet) 5 - Wetland Non-Vascular Plants ¹ Problematic Hydrophytic Vegetation ¹ (Explain) ¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. Hydrophytic Vegetation
5. Potentilla anserina 6. Atriplex patula 7. Carex lyngbyei 8. Agrostis stolonifera 9.	1 0.5 0.5 1 118	N N N = Total Cove	OBL FACW OBL FAC	1 - Rapid Test for Hydrophytic Vegetation x 2 - Dominance Test is >50% x 3 - Prevalence Index is ≤3.01 4 - Morphological Adaptations1 (Provide supporting data in Remarks or on a separate sheet) 5 - Wetland Non-Vascular Plants1 Problematic Hydrophytic Vegetation1 (Explain) ¹Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. Hydrophytic Vegetation Present? Yes x No

SOIL							Sampling Point:	TQ P1
		the depth				firm the a	absence of indicators.)	
Depth	Matrix	0/		Redox Feat	4	1 2	Tartan	Develo
(inches)			Color (moist)	 				
Hydric Soil Histosol Histic Ep Black Hi	Indicators: (Application, D=Depletion) (A1) (A1) (A2) (A3) (A3) (A3) (A4) (A4) (A4)			rwise notec 5) S6) ineral (F1) (i.)	Ind	² Location: PL=Pore L licators for Problematic 2 cm Muck (A10) Red Parent Material (TF Very Shallow Dark Surfa Other (Explain in Remar	Hydric Soils ³ : 2) ace (TF12)
Thick Da	d Below Dark Surface ark Surface (A12) /ucky Mineral (S1) Gleyed Matrix (S4)	(A11)	Depleted Matrix Redox Dark Surf Depleted Dark S Redox Depressio	face (F6) furface (F7)			³ Indicators of hydrophyti wetland hydrology must unless disturbed or prob	be present,
Restrictive La Type: Depth (inch	yer (if present):				Hydric Soil	Present?	Yes X	No
was used: The e	levation of biennial tio	dal inundati	ion (50% exceedand	ce elevation) was determir	ned from I	ent's Procedure 4e for Pro long-term water level mor (below) and the wetland	nitoring at NOAA's

HYDROLOGY

Wetland Hydrology Indicators:	
Primary Indicators (minimum of one required; check all that apply)	Secondary Indicators (2 or more required)
Water-Stained Leaves (B9) (ex	Water-Stained Leaves (B9) (MLRA 1, 2,
Surface Water (A1) MLRA 1, 2, 4A, and 4B)	4A, and 4B)
High Water Table (A2) Salt Crust (B11)	Drainage Patterns (B10)
Saturation (A3) Aquatic Invertebrates (B13)	Dry-Season Water Table (C2)
Water Marks (B1) Hydrogen Sulfide Odor (C1)	Saturation Visible on Aerial Imagery (C9)
Oxidized Rhizospheres along	
Sediment Deposits (B2) Living Roots (C3)	Geomorphic Position (D2)
Drift Deposits (B3) Presence of Reduced Iron (C4)) Shallow Aquitard (D3)
Recent Iron Reduction in Tilled	
Algal Mat or Crust (B4) Soils (C6)	FAC-Neutral Test (D5)
Stunted or Stressed Plants (D1)
Iron Deposits (B5) (LRR A)	Raised Ant Mounds (D6) (LRR A)
Surface Soil Cracks (B6) X Other (Explain in Remarks)	Frost-Heave Hummocks (D7)
Inundation Visible on Aerial Imagery (B7)	
Sparsely Vegetated Concave Surface (B8)	
Field Observations:	
Surface Water Present? Yes No Depth (inches):	
Water Table Present? Yes No Depth (inches):	Wetland Hydrology Present? Yes X No
Saturation Present?	
(includes capillary fringe) Yes No Depth (inches):	
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec	Juns), if available:
NOAA's Extreme Water Level website (<u>http://tidesandcurrents.noaa.gov/est/</u>) analyzes	
elevation that has a 50% probability of inundation each year (the elevation of biennial ir available NOAA station with these data, the 50% exceedance elevation is 10.44 ft NAV	
	Doo, so all aleas below 10.44 it have welland hydrology.
Remarks: Elevation of this plot is 8.5 ft NAVD88, based on USFS as-built survey.	

WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

Project/Site:	Tama	ara Quays			City/C	ounty:	Lincolr	า		Samp	ling Date:	9/11/14	Ļ			
Applicant/Owr	ner:	USFS					State:	OR	Sampling F	oint:	TQ T1 P1					
Investigator(s)	: <u>L</u>	aura Broph	ıy		Se	ection, To	ownship,	Range:	T6S R11V	V Sec 2	25					
Landform (hills	slope, f	terrace, etc	:.):	Tidal floodp	lain	Lo	cal relief	(concave	, convex, no	ne):	concave		Slope (%):	4%	
Subregion (LR	(R):	LRR A			Lat:	498587	77.100	Long:	422875.35	56	Datum:	NAD83	, meters (UTN	√ Zone	: 10N)
Soil Map Unit	Name:	Bentilla	a silty	/ clay loam, 3	8 to 12%	6 slope			NW	I classi	fication:	E2EMP				
Are climatic / ł	nydrolc	gic conditi	ons d	on the site typ	oical for	this time	e of year	? Yes	X No	(If n	o, explain in	Remarks	s.)			
Are Vegetation	า	, Soil	Х	, or Hydrolo	gy	signif	icantly di	sturbed?	Are "Nor	mal Cir	cumstances	" present	t? Yes	Х	No	
Are Vegetation	ו	, Soil		, or Hydrolo	gy	natura	ally probl	ematic?	(If	needeo	d, explain ar	iy answe	rs in Rem	arks	s.)	

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes X No Yes X No Yes X No	Is the Sampled Area within a Wetland?	Yes _	x	No
Remarks: See Remarks in Soils an	d Hydrology sections				

VEGETATION – Use scientific names of plants.

	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size:) 1.	<u>% Cover</u>	Species?	<u>Status</u>	Number of Dominant Species That Are OBL, FACW, or FAC: 1 (A)
				Total Number of Dominant
2 3				Species Across All Strata: 1 (B)
4.				Percent of Dominant Species
				That Are OBL, FACW, or FAC: 100 (A/B)
		= Total Cov	er	
Sapling/Shrub Stratum (Plot size:)			-	Prevalence Index worksheet:
1 /				Total % Cover of: Multiply by:
2.				OBL species x 1 =
3.				FACW species 98 x 2 = 196
4				FAC species x 3 =
5				FACU species x 4 =
		= Total Cove	er	UPL species x 5 =
Herb Stratum (Plot size: 2m)				Column Totals: 98 (A) 196 (B)
1. Juncus effusus	97	Y	FACW	
2. Phalaris arundinacea	0.4	Ν	FACW	Prevalence Index = B/A = 2.00
3. Epilobium ciliatum	0.1	Ν	FACW	
4. Rumex occidentalis	0.5	Ν	FACW	Hydrophytic Vegetation Indicators:
5				1 - Rapid Test for Hydrophytic Vegetation
6				X 2 - Dominance Test is >50%
7				x 3 - Prevalence Index is $\leq 3.0^1$
8				4 - Morphological Adaptations ¹ (Provide supporting
9				data in Remarks or on a separate sheet)
10				5 - Wetland Non-Vascular Plants ¹
11				Problematic Hydrophytic Vegetation ¹ (Explain)
	98	= Total Cov	er	¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
Woody Vine Stratum (Plot size:)				be present, unless disturbed of problematic.
1				
2		T . 10		Hydrophytic
		= Total Cov	er	Vegetation
% Bare Ground in Herb Stratum 2				Present? Yes <u>x</u> No
Remarks:				

SOIL

Sampling Point: TQ T1 P1

Profile Description: (Describe to the dep Depth Matrix	oth needed to document the inc Redox Fea		absence of indicators.)	
(inches) Color (moist) %	Color (moist) %	Type ¹ Loc ²	Texture	Remarks
¹ Type: C=Concentration, D=Depletion, RM	=Reduced Matrix, CS=Covered c	r Coated Sand Grains.	² Location: PL=Pore L	ining, M=Matrix.
Hydric Soil Indicators: (Applicable to a	II LRRs, unless otherwise noted	d.) Ind	dicators for Problemation	: Hydric Soils ³ :
Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4)	Sandy Redox (S5) Stripped Matrix (S6) Loamy Mucky Mineral (F1) (Loamy Gleyed Matrix (F2) Depleted Matrix (F3) Redox Dark Surface (F6) Depleted Dark Surface (F7) Redox Depressions (F8)	except MLRA 1)X	2 cm Muck (A10) Red Parent Material (TF Very Shallow Dark Surfa Other (Explain in Remain ³ Indicators of hydrophyt wetland hydrology must unless disturbed or protection	ace (TF12) rks) ic vegetation and be present,
Restrictive Layer (if present):				
Type: Depth (inches):		Hydric Soil Present	? Yes X	No
Remarks: Soils are disturbed by recent grading was used: The elevation of biennial tidal inund South Beach tide station, and soils below that details.	ation (50% exceedance elevation) was determined from	long-term water level mo	nitoring at NOAA's

HYDROLOGY

Wetland Hydrology Indicators:		
Primary Indicators (minimum of one required; che	11.2/	Secondary Indicators (2 or more required)
Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8)	Cept Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)	
Field Observations: Surface Water Present? Yes Water Table Present? Yes Saturation Present? No (includes capillary fringe) Yes	Depth (inches): Depth (inches): Depth (inches):	Wetland Hydrology Present? Yes X No
Describe Recorded Data (stream gauge, monitorin NOAA's Extreme Water Level website (<u>http://tidesa</u> elevation that has a 50% probability of inundation	ng well, aerial photos, previous inspec andcurrents.noaa.gov/est/) analyzes each year (the elevation of biennial ir	ctions), if available: long-term water level monitoring data to determine the nundation, or the "50% exceedance elevation"). At the nearest D88, so all areas below 10.44 ft have wetland hydrology .
Remarks: Elevation of this plot is 8.41 ft NAVD8		

WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

Project/Site:	Tamar	a Quays			City/C	county:	Lincolr	า		Samp	oling Date:	9/11/14				
Applicant/Own	er: U	SFS					State:	OR	Sampling P	oint:	TQ T1 P2					
Investigator(s)	: La	ura Bropł	ny		Se	ection, To	ownship,	wnship, Range: T6S R11W Sec 25								
Landform (hills	slope, te	rrace, etc	c.):	Tidal floodp	olain	Lo	cal relief	(concave	, convex, no	ne):	concave	S	lope (%):	4%	
Subregion (LR	R):	LRR A			Lat:	498588	83.495	Long:	422877.65	58	Datum:	NAD83, r	neters (UTN	I Zone	10N)
Soil Map Unit	Name:	Bentilla	a silty	/ clay loam, 3	3 to 12%	% slopes			NW	l classi	fication:	n/a (not w	etland)			
Are climatic / h	nydrolog	ic conditi	ons d	on the site typ	oical for	r this time	e of year	? Yes	X No	(If n	o, explain in	Remarks.)				
Are Vegetation	ר ו	, Soil	Х	, or Hydrold	gy	signif	icantly di	sturbed?	Are "Nor	mal Cir	cumstances	" present?	Yes	Х	No	
Are Vegetation	า	, Soil	_	, or Hydrold	gy	natura	ally probl	ematic?	(If	needeo	d, explain ar	y answers	in Rem	arks	.)	

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes X No Yes No X Yes No X	Is the Sampled Area within a Wetland?	Yes NoX
Remarks: See Remarks in Soils an	d Hydrology sections		

VEGETATION – Use scientific names of plants.

	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size:)	<u>% Cover</u>	Species?	<u>Status</u>	Number of Dominant Species That Are OBL, FACW, or FAC: 2 (A)
1				Total Number of Dominant
2 3			-	Species Across All Strata: <u>2</u> (B)
4.				Percent of Dominant Species
···				• That Are OBL, FACW, or FAC: 100 (A/B)
		= Total Cov	er	
Sapling/Shrub Stratum (Plot size: 2m)				Prevalence Index worksheet:
1. Cytisus scoparius	0.5	Ν	NOL	Total % Cover of: Multiply by:
2. Alnus rubra	0.5	Ν	FAC	OBL species x 1 =
3.				FACW species 65 x 2 = 130
4.				FAC species 32 x 3 = 96
5				FACU species 3 x 4 = 12
	1	= Total Cov	er	UPL species $.5 \times 5 = 2.5$
Herb Stratum (Plot size: 2m)				Column Totals: $101 (A) 241 (B)$
1. Phalaris arundinacea	50	Y	FACW	
2. Holcus lanatus	31	Y	FAC	Prevalence Index = B/A = 2.39
3. Agrostis capillaris	15	N	FACW	
4. Hypocharis radicata	0.5	N	FACU	Hydrophytic Vegetation Indicators:
5. Cirsium vulgare	2	N	FACU	1 - Rapid Test for Hydrophytic Vegetation
6. Cytisus scoparius seedlings	0.3	N	NOL	× 2 - Dominance Test is >50%
7. Lotus uliginosus	0.5	N	FAC	× 3 - Prevalence Index is $\leq 3.0^1$
8. Convolvulus arvensis	0.1	N	NOL	4 - Morphological Adaptations ¹ (Provide supporting
9. Anthoxanthum odoratum	0.5	N	FACU	data in Remarks or on a separate sheet)
10. Deschampsia cespitosa	0.1	N	FACW	5 - Wetland Non-Vascular Plants ¹
11.				Problematic Hydrophytic Vegetation ¹ (Explain)
	100	= Total Cov	er	¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size:)				be present, unless disturbed or problematic.
1				
2.				
		= Total Cov	er	Hydrophytic Vegetation
% Bare Ground in Herb Stratum 0				Present? Yes x No
	_			
Remarks:				

SOIL							Sam	pling Point:	TQ T1 P2
	cription: (Describe t	o the dept				nfirm the a	bsence of i	ndicators.)	
Depth	Matrix			Redox Feat		1 2	T		Demonto
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Text	ure	Remarks
·								<u> </u>	
								<u> </u>	
								· _	
		·							
								<u> </u>	
	oncentration, D=Depl	etion RM-	-Reduced Matrix CS	-Covered o	r Coated Sar	nd Grains	² Location:	PI –Pore Lii	ning, M=Matrix.
турс. 0=0					Coaled Gal	la Oranis.	Location.		ing, m=matrix.
Hydric Soi	I Indicators: (Applic	able to all	LRRs, unless other	wise noted	l.)	Ind	icators for F	Problematic	Hydric Soils ³ :
Histoso	l (A1)		Sandy Redox (St	5)			2 cm Muck (A10)	
	pipedon (A2)	_	Stripped Matrix (Material (TF2	2)
	listic (A3)		Loamy Mucky Mi		except MLR	A 1)		v Dark Surfa	
	en Sulfide (A4)		Loamy Gleyed M			, <u> </u>	Other (Expla	ain in Remark	s)
Deplete	ed Below Dark Surface	ə (A11) 📃	Depleted Matrix ((F3)					
	ark Surface (A12)	_	Redox Dark Surfa				³ Indicators of	f hydrophytic	vegetation and
	Mucky Mineral (S1)	_	Depleted Dark St					rology must b	
Sandy	Gleyed Matrix (S4)		Redox Depressio	ons (F8)			unless distu	rbed or proble	ematic
Restrictive La	ayer (if present):								
Туре:					Hydric Soi	I Present?	Yes	<u> </u>	lo X
Depth (inc	hes):								
Remarks: Soils	are disturbed by rece	nt grading.	so they were not sar	mpled. Inste	ad, the 2010) Suppleme	nt's Procedu	re 4e for Pro	blematic Hydric Soils
was used: The	elevation of biennial ti	idal inunda	tion (50% exceedanc	e elevation)	was determ	ined from le	ong-term wat	er level moni	toring at NOAA's
	le station, and soils be								
details. This plo	ot is above the 50%	exceedance	ce elevation, so soil	s are not co	onsidered h	ydric for p	urposes of	delineating t	he tidal wetland.

HYDROLOGY

Wetland Hydrology Indicators:		
Primary Indicators (minimum of one required; ch	neck all that apply)	Secondary Indicators (2 or more required)
 Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) 	Water-Stained Leaves (B9) (exc MLRA 1, 2, 4A, and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Li Roots (C3) Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils (C6) Stunted or Stressed Plants (D1) (LRR A) Other (Explain in Remarks)	water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)
Field Observations: Surface Water Present? Yes Water Table Present? Yes Saturation Present? No (includes capillary fringe) Yes	Depth (inches): Depth (inches): Depth (inches):	Wetland Hydrology Present? Yes <u>No X</u>
Describe Recorded Data (stream gauge, monitori NOAA's Extreme Water Level website (<u>http://tides</u> elevation that has a 50% probability of inundation	ing well, aerial photos, previous inspec sandcurrents.noaa.gov/est/) analyzes each year (the elevation of biennial in	tions), if available: long-term water level monitoring data to determine the lundation, or the "50% exceedance elevation"). At the nearest D88, so all areas below 10.44 ft have wetland hydrology .
Remarks: Elevation of this plot is 10.59 ft NAVI hydrology criterion for a tidal wetland, since it is a		uracy 0.051 m = 2 in). Therefore, this plot does not meet the

WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

Project/Site:	Tama	ira Quays			City/C	ounty:	Lincolr	า		Samp	ling Date:	9/23/14				
Applicant/Owr	ner: I	JSFS					State:	OR	Sampling F	Point:	TQ T2 P1					
Investigator(s): Laura Brophy Section, Township, Range: T6S R11W Sec 25																
Landform (hills	slope, t	errace, etc	c.):	Tidal floodp	lain	Lo	cal relief	(concave	, convex, no	ne):	concave	:	Slope (%	6):	4%	
Subregion (LR	≀R):	LRR A			Lat:	498568	81.935	Long:	423076.28	88	Datum:	NAD83,	meters	(UTI	∕l Zone	10N)
Soil Map Unit	Name:	Brenne	er silt	loam, 0 to 2	% slope)			NW	l class	fication:	E2EMP				
Are climatic / ł	nydrolo	gic conditi	ons d	on the site typ	oical for	this time	e of year	? Yes	X No	(If n	o, explain in	Remarks	.)			
Are Vegetation	n	, Soil	Х	, or Hydrolo	gy	signif	icantly di	sturbed?	Are "Nor	mal Cir	cumstances	" present	? Yes	Х	No	
Are Vegetation	n	, Soil		, or Hydrolo	ду	natura	ally probl	ematic?	(If	neede	d, explain ar	ny answer	s in Ren	narks	s.)	

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes X No Yes X No Yes X No	Is the Sampled Area within a Wetland?	Yes _	<u>x</u>	No
Remarks: See Remarks in Soils an	d Hydrology sections				

VEGETATION – Use scientific names of plants.

	p										
	Absolute	Dominant	Indicator	Dominance Test worksheet:							
Tree Stratum (Plot size:) 1	<u>% Cover</u>	Species?	<u>Status</u>	Number of Dominant Species That Are OBL, FACW, or FAC: (A)							
2				Total Number of Dominant Species Across All Strata: 1 (B)							
3 4				Percent of Dominant Species							
*				That Are OBL, FACW, or FAC: 100 (A/B)							
		= Total Cov	er								
Sapling/Shrub Stratum (Plot size: 2m)		•		Prevalence Index worksheet:							
1. Alnus rubra sapling	5	Ν	FAC	Total % Cover of: Multiply by:							
2				OBL species x 1 =							
3				FACW species 84 x 2 = 168							
4				FAC species 21 x 3 = 63							
5				FACU species x 4 =							
	5	= Total Cove	er	UPL species x 5 =							
Herb Stratum (Plot size: 2m)				Column Totals: 105 (A) 231 (B)							
1. Juncus effusus	81	Y	FACW								
2. Lotus uliginosus	15	N	FAC	Prevalence Index = B/A = 2.20							
3. Phalaris arundinacea	2	N	FACW	Hydrophytic Vegetation Indicators							
4. Holcus lanatus	1	N	FAC	Hydrophytic Vegetation Indicators:							
5. Persicaria maculosa	1	N	FACW	1 - Rapid Test for Hydrophytic Vegetation							
6				X 2 - Dominance Test is >50%							
7				\times 3 - Prevalence Index is ≤3.0 ¹							
8				4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)							
9				5 - Wetland Non-Vascular Plants ¹							
10				Problematic Hydrophytic Vegetation ¹ (Explain)							
11	100	= Total Cov	or	¹ Indicators of hydric soil and wetland hydrology must							
Woody Vine Stratum (Plot size:)	100	_ 10tal 000		be present, unless disturbed or problematic.							
1)											
2.											
		= Total Cov	er	Hydrophytic Vegetation							
% Bare Ground in Herb Stratum 0				Present? Yes x No							
Remarks: Small plot sizes due to topographic gradien	nt			1							

SOIL							Samplir	ng Point:	TQ T2 P1
	ription: (Describe t Matrix	o the dept		ent the inc Redox Fea		onfirm the a	absence of indi	cators.)	
Depth (inches)	Color (moist)	%	Color (moist)	<u>xeu0x rea</u> %	Type ¹	Loc ²	Texture	1	Remarks
(1101100)					<u> </u>			<u> </u>	Remaine
	. <u> </u>								
	·								
	·								
					. <u></u> ,				
	oncentration, D=Depl	otion DM	Poducod Matrix CS	Covered	r Cootod Sor	od Croino	² Location: PL	-Doro Linin	a M-Motrix
Type. 0=00						lu Oranis.	Location. T		g, m=matrix.
Hydric Soil	Indicators: (Applic	able to all	LRRs, unless other	wise note	d.)	Ind	licators for Prol	blematic Hy	dric Soils ³ :
Histoso	l (A1)		Sandy Redox (S5	5)			2 cm Muck (A10	0)	
Histic E	pipedon (A2)		Stripped Matrix (S	S6)			Red Parent Mat	,	
Black H	istic (A3)	_	Loamy Mucky Mi		except MLR	A 1)	Very Shallow D		(TF12)
	en Sulfide (A4)	_	Loamy Gleyed M			Х	Other (Explain i	in Remarks)	
	d Below Dark Surface	e (A11)	Depleted Matrix (2		
	ark Surface (A12)	_	Redox Dark Surfa				³ Indicators of hy		
	Mucky Mineral (S1) Gleyed Matrix (S4)	—	Depleted Dark Su Redox Depressio				wetland hydrolo unless disturbed		
	Sleyeu Matrix (34)			IIS (FO)	1				allC
Restrictive La	yer (if present):								
Type:					Hydric Soi	il Prosont?	Yes	X No	
Depth (incl	hee).				Tryune Sol	in resent:	163		
• •	,				I				
	are disturbed by rece								
	elevation of biennial ti e station, and soils be								
details.				nea nyane.		Section			

HYDROLOGY

Wetland Hydrology Indicators:		
Primary Indicators (minimum of one required; chec		Secondary Indicators (2 or more required)
Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3)	Water-Stained Leaves (B9) (ex MLRA 1, 2, 4A, and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Roots (C3) Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled	cept Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3)
Algal Mat or Crust (B4)	Soils (C6) Stunted or Stressed Plants (D1 (LRR A) Other (Explain in Remarks)	FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Field Observations:		
Surface Water Present? Yes No Water Table Present? Yes No Saturation Present? Includes capillary fringe) Yes No	Depth (inches): Depth (inches): Depth (inches):	Wetland Hydrology Present? Yes X No
elevation that has a 50% probability of inundation ea	ndcurrents.noaa.gov/est/) analyzes ach year (the elevation of biennial ir	tions), if available: long-term water level monitoring data to determine the undation, or the "50% exceedance elevation"). At the nearest D88, so all areas below 10.44 ft have wetland hydrology .
Remarks: Elevation of this plot is 9.09 ft NAVD88	, based on RTK-GPS survey (accur	acy 0.051 m = 2 in).

WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

Project/Site:	Tamar	a Quays			City/C	ounty:	Lincolr	า		Samp	oling Date:	9/23/14				
Applicant/Owr	ner: <u>U</u>	ISFS					State:	OR	Sampling F	Point:	TQ T2 P2					
Investigator(s): Laura Brophy Section, Township, Range: T6S R11W Sec 25																
Landform (hills	slope, te	errace, etc	c.):	Tidal floodp	lain	Lo	cal relief	(concave	, convex, no	one):	concave	:	Slope (%):	4%	
Subregion (LR	R):	LRR A			Lat:	49856	78.064	Long:	423080.8	09	Datum:	NAD83,	meters (UTN	I Zone	10N)
Soil Map Unit	Name:	Brenne	er silt	loam, 0 to 2	% slope	es			NV	/I classi	fication:	n/a (not v	vetland)			
Are climatic / ł	nydrolog	ic conditi	ons d	on the site typ	oical for	this time	e of year	? Yes	X No	(If n	o, explain in	Remarks	.)			
Are Vegetation	า	, Soil	Х	, or Hydrold	gy	signif	icantly di	sturbed?	Are "No	rmal Cir	cumstances	" present	? Yes	Х	No	
Are Vegetation	ר <u> </u>	, Soil		, or Hydrold	gy	natur	ally probl	ematic?	(If	needeo	d, explain ar	iy answer	s in Rem	arks	.)	

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes X No Yes No X Yes No X	Is the Sampled Area within a Wetland?	Yes	No <u></u> _
Remarks: See Remarks in Soils an	d Hydrology sections			

VEGETATION – Use scientific names of plants.

	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 2m) 1.	<u>% Cover</u>	Species?	<u>Status</u>	Number of Dominant Species That Are OBL, FACW, or FAC: 2 (A)
1 2.				Total Number of Dominant
3				Species Across All Strata: 2 (B)
4.				Percent of Dominant Species
				That Are OBL, FACW, or FAC: 100 (A/B)
		= Total Cov	er	
Sapling/Shrub Stratum (Plot size: 2m)		-		Prevalence Index worksheet:
1 /				Total % Cover of: Multiply by:
2.				OBL species x 1 =
3.				FACW species 8 x 2 = 16
4.				FAC species 81 x 3 = 243
5.				FACU species 12 x 4 = 48
		= Total Cov	er	UPL species $x = 12$
Herb Stratum (Plot size: 2m)				Column Totals: 101 (A) (B)
1. Agrostis capillaris	50	Y	FAC	
2. Holcus lanatus	30	Y	FAC	Prevalence Index = B/A = 3.04
3. Anthoxanthum odoratum	10	Ν	FACU	
4. Juncus effusus	5	Ν	FACW	Hydrophytic Vegetation Indicators:
5. Hypochaeris radicata	1	Ν	FACU	1 - Rapid Test for Hydrophytic Vegetation
6. Plantago lanceolata	1	Ν	FACU	X 2 - Dominance Test is >50%
7. Lotus uliginosus	1	Ν	FAC	3 - Prevalence Index is ≤3.0 ¹
8. Deschampsia cespitosa	2	N	FACW	4 - Morphological Adaptations ¹ (Provide supporting
9. Spiraea douglasii seedling	0.5	N	FACW	data in Remarks or on a separate sheet)
Salix hookeriana seedling	0.5	N	FACW	5 - Wetland Non-Vascular Plants ¹
11				Problematic Hydrophytic Vegetation ¹ (Explain)
	101	= Total Cov	er	¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size:)				be present, unless disturbed or problematic.
1				
2				Hydrophytic
		= Total Cove	er	Vegetation
% Bare Ground in Herb Stratum 0	_			Present? Yes x No
Remarks: Small plot sizes due to topographic gradie	ent.			

SOIL							Sam	npling Point:	TQ T2 P2
	cription: (Describe to	the dept	h needed to docun			onfirm the al	bsence of i	ndicators.)	
Depth	Matrix		0	Redox Feat	4	. 2	-		
(inches)	Color (moist)	%	Color (moist)	%	Type	Loc ²	Text	ture	Remarks
						·		· _	
						·		· _	
						. <u></u>			
						<u> </u>			
¹ Type: C=C	oncentration, D=Deple	tion, RM=I	Reduced Matrix, CS	=Covered o	r Coated Sar	nd Grains.	² Location:	PL=Pore Li	ning, M=Matrix.
Hydric Soil	Indicators: (Applica	ble to all	LRRs, unless othe	rwise noted	l.)	Indi	cators for I	Problematic	Hydric Soils ³ :
Histoso	l (A1)		Sandy Redox (S	5)			2 cm Muck	(A10)	
Histic E	pipedon (A2)		Stripped Matrix ((S6)		F	Red Parent	Material (TF2	2)
Black H	listic (A3)		Loamy Mucky M	ineral (F1) (except MLR	A1) \	Very Shallo	w Dark Surfa	ce (TF12)
Hydroge	en Sulfide (A4)		Loamy Gleyed N	Aatrix (F2)	-		Other (Expla	ain in Remark	(S)
Deplete	d Below Dark Surface	(A11)	Depleted Matrix	(F3)					
Thick D	ark Surface (A12)		Redox Dark Sur	face (F6)		3	³ Indicators of	of hydrophytic	vegetation and
Sandy I	Mucky Mineral (S1)		Depleted Dark S	Surface (F7)		١	wetland hyd	Irology must b	pe present,
Sandy (Gleyed Matrix (S4)		Redox Depressi	ons (F8)		ι	unless distu	rbed or probl	ematic
Restrictive La	ayer (if present):								
Type:					Hvdric Soi	il Present?	Yes	r	No X
Depth (inc	hes):						-		
• •	,	t and Para		and a last		0	die Deserve		h han a c'a dhada'a O a'la
	are disturbed by recer elevation of biennial tio								
	le station, and soils be								
	ot is above the 50% e								

HYDROLOGY

Wetland Hydrology Indicators:							
Primary Indicators (minimum of one required; c	Secondary Indicators (2 or more required)						
 Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) 	Water-Stained Leaves (B9) (exc MLRA 1, 2, 4A, and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Li Roots (C3) Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils (C6) Stunted or Stressed Plants (D1) (LRR A) Other (Explain in Remarks)	water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)					
Field Observations: Surface Water Present? Yes No Water Table Present? Yes No Saturation Present? (includes capillary fringe) Yes No	Depth (inches): Depth (inches): Depth (inches):	Wetland Hydrology Present? Yes No X					
(Includes capillary fringe) Yes Depth (inches): Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: NOAA's Extreme Water Level website (<u>http://tidesandcurrents.noaa.gov/est/</u>) analyzes long-term water level monitoring data to determine the elevation that has a 50% probability of inundation each year (the elevation of biennial inundation, or the "50% exceedance elevation"). At the nearest available NOAA station with these data, the 50% exceedance elevation is 10.43 ft NAVD88, so all areas below 10.43 ft have wetland hydrology .							
	/D88, based on our RTK-GPS survey (accuracy 0.051 m = 2 in). Therefore, this plot does not meet					

WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

Project/Site:	Tamar	a Quays			City/C	ounty:	Lincolr	า		Samp	ling Date:	9/23/14				
Applicant/Own	er: U	SFS					State:	OR	Sampling P	oint:	TQ T2 P3					
Investigator(s): Laura Brophy Section,						ection, To	ownship,	Range:	T6S R11V	V Sec 2	25					
Landform (hills	slope, te	rrace, etc	c.):	Tidal floodp	lain	Lo	cal relief	(concave	, convex, no	ne):	concave	S	lope (%):	4%	
Subregion (LR	R):	LRR A			Lat:	498567	77.493	Long:	423087.22	20	Datum:	NAD83, r	neters (UTN	I Zone	10N)
Soil Map Unit	Name:	Brenne	er silt	loam, 0 to 2	% slope	es			NW	l classi	fication:	n/a (not w	etland)			
Are climatic / h	nydrolog	ic conditi	ons d	on the site typ	oical for	this time	e of year	? Yes	X No	(If no	o, explain in	Remarks.)				
Are Vegetation	า	, Soil	Х	, or Hydrolo	gy	signif	icantly di	sturbed?	Are "Nori	mal Cir	cumstances	" present?	Yes	Х	No	
Are Vegetation	า	, Soil		, or Hydrolo	gy	natura	ally probl	ematic?	(If	needeo	d, explain an	y answers	in Rem	arks	.)	

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes X No Yes No X Yes No X	Is the Sampled Area within a Wetland?	Yes	No <u></u> _			
Remarks: See Remarks in Soils and Hydrology sections							

VEGETATION – Use scientific names of plants.

	Absolute	Dominant	Indicator	Dominance Test worksheet:
<u>Tree Stratum</u> (Plot size: <u>2m</u>) 1.	<u>% Cover</u>	Species?	<u>Status</u>	Number of Dominant Species That Are OBL, FACW, or FAC: 1 (A)
				Total Number of Dominant
2				Species Across All Strata: <u>3</u> (B)
3				Percent of Dominant Species
4				That Are OBL, FACW, or FAC: 100 (A/B)
		= Total Cov	er	
Sapling/Shrub Stratum (Plot size: 2m)		•		Prevalence Index worksheet:
1. Spiraea douglasii	85	Y	FACW	Total % Cover of: Multiply by:
2				OBL species x 1 =
3.				FACW species 86 x 2 = 172
4.				FAC species 3 x 3 = 9
5				FACU species 11 x 4 = 44
	85	= Total Cov	er	UPL species $x 5 =$
Herb Stratum (Plot size: 2m)				Column Totals: 100 (A) 225 (B)
1. Rubus ursinus	10	Ν	FACU	
2. Holcus lanatus	2	Ν	FAC	Prevalence Index = B/A = 2.25
3. Festuca rubra	1	Ν	FAC	
4. Symphyotrichum subspicatum	1	Ν	FACW	Hydrophytic Vegetation Indicators:
5. Anthoxanthum odoratum	1	N	FACU	1 - Rapid Test for Hydrophytic Vegetation
6				x 2 - Dominance Test is >50%
7				x 3 - Prevalence Index is $\leq 3.0^1$
8				4 - Morphological Adaptations ¹ (Provide supporting
9				data in Remarks or on a separate sheet)
				5 - Wetland Non-Vascular Plants ¹
11				Problematic Hydrophytic Vegetation ¹ (Explain)
	15	= Total Cov	er	¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size:)				be present, unless disturbed or problematic.
1				
2				Hydrophytic
		= Total Cov	er	Vegetation
% Bare Ground in Herb Stratum 85	_			Present? Yes <u>x</u> No
Remarks: Small plot sizes due to topographic gradie	nt.			

SOIL							Samp	oling Point:	TQ T2 P3
	ription: (Describe to	o the depth				firm the a	absence of in	dicators.)	
Depth	Matrix			Redox Feat					
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Textu	ire	Remarks
						·			
	noontration D Donk	tion DM D	aduard Matrix CC			d Croine	² Location:		ing M Matrix
Type. C=C0	ncentration, D=Deple		ceduced matrix, CS	S=Covered o	Coaled Sand	u Grains.	Location.	FL=F0le Li	ning, M=Matrix.
Hydric Soil I	Indicators: (Application	able to all L	RRs, unless othe	rwise noted	l.)	Ind	licators for Pr	oblematic l	-lydric Soils ³ :
Histosol	(Δ1)		Sandy Redox (S	5)	-		2 cm Muck (A	10)	-
	vipedon (A2)		Stripped Matrix (,			Red Parent M)
Black His			Loamy Mucky M		except MLRA	(1)	Very Shallow		
	n Sulfide (A4)		Loamy Gleyed N				Other (Explain		
	Below Dark Surface	(A11)	Depleted Matrix						- /
	rk Surface (A12)	<u> </u>	Redox Dark Sur				³ Indicators of	hvdrophytic	vegetation and
	lucky Mineral (S1)		Depleted Dark S	Surface (F7)			wetland hydro		
Sandy G	leyed Matrix (S4)		Redox Depressi	ons (F8)			unless disturb	ped or proble	matic
			_						
Restrictive Lay	ver (if present):								
Type:					Hydric Soil	Present?	Yes	N	lo X
Depth (inch	es):				-				
Remarks Soils a	re disturbed by recei	nt aradina s	so they were not sa	moled Inste	ad the 2010	Suppleme	nt's Procedur	a 4a for Prot	plematic Hydric Soils
	levation of biennial tig								
	station, and soils be								
	t is above the 50% e								

HYDROLOGY

Wetland Hydrology Indicators:		
Primary Indicators (minimum of one required; of	Secondary Indicators (2 or more required)	
	Water-Stained Leaves (B9) (ex	water-Stained Leaves (B9) (MLRA 1, 2,
Surface Water (A1)	MLRA 1, 2, 4A, and 4B)	4A, and 4B)
High Water Table (A2)	Salt Crust (B11)	Drainage Patterns (B10)
Saturation (A3)	Aquatic Invertebrates (B13)	Dry-Season Water Table (C2)
Water Marks (B1)	Hydrogen Sulfide Odor (C1)	Saturation Visible on Aerial Imagery (C9)
	Oxidized Rhizospheres along Li	ving
Sediment Deposits (B2)	Roots (C3)	Geomorphic Position (D2)
Drift Deposits (B3)	Presence of Reduced Iron (C4)	Shallow Aguitard (D3)
= = +p = (= +)	Recent Iron Reduction in Tilled	•
Algal Mat or Crust (B4)	Soils (C6)	FAC-Neutral Test (D5)
	Stunted or Stressed Plants (D1)	
Iron Deposits (B5)	(LRR A)	Raised Ant Mounds (D6) (LRR A)
Surface Soil Cracks (B6)	Other (Explain in Remarks)	Frost-Heave Hummocks (D7)
Inundation Visible on Aerial Imagery (B7)		
Sparsely Vegetated Concave Surface (B8)		
Field Observations:		
	Dopth (inches)	
	Depth (inches):	Wetlend Undrelegy Present? Vee No. V
Water Table Present? Yes No	Depth (inches):	Wetland Hydrology Present? Yes No _X
Saturation Present?	Death (in the s)	
(includes capillary fringe) Yes No	Depth (inches):	
Describe Recorded Data (stream gauge, monito		
		long-term water level monitoring data to determine the
		nundation, or the "50% exceedance elevation"). At the nearest
		D88, so all areas below 10.43 ft have wetland hydrology.
•		ove the 10.43 ft 50% exceedance elevation, based on the
, , ,	vey. Therefore, this plot does not meet	the hydrology criterion for a tidal wetland, since it is above the
50% exceedance elevation.		

WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

Project/Site:	Tamar	a Quays			City/C	ounty:	Lincolr	า		Samp	oling Date:	9/23/14			
Applicant/Own	er: U	ISFS					State:	OR	Sampling F	oint:	TQ T2 P4				
Investigator(s): Laura Brophy Section, T						ection, To	ownship,	Range:	T6S R11V	V Sec 2	25				
Landform (hills	slope, te	errace, et	c.):	Tidal floodp	lain	Lo	cal relief	(concave	, convex, no	ne):	concave	s	lope (%):	4%	
Subregion (LR	R):	LRR A			Lat:	498567	77.196	Long:	423090.49	90	Datum:	NAD83, I	meters (UT	M Zo	ne 10N)
Soil Map Unit	Name:	Brenne	er silt	loam, 0 to 2	% slope	es			NW	I classi	fication:	n/a (not w	etland)		
Are climatic / h	nydrolog	ic conditi	ions d	on the site typ	oical for	this time	e of year	? Yes	X No	(If n	o, explain in	Remarks.))		
Are Vegetation	า	, Soil	Х	, or Hydrold	gy	signif	icantly di	sturbed?	Are "Nor	mal Cir	cumstances	" present?	Yes X	N	lo
Are Vegetation	า	, Soil		, or Hydrold	gy	natura	ally probl	ematic?	(If	needeo	d, explain an	y answers	in Remark	(s.)	

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes X No Yes No X Yes No X	Is the Sampled Area within a Wetland?	Yes NoX				
Remarks: See Remarks in Soils and Hydrology sections							

VEGETATION – Use scientific names of plants.

	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 5m)	<u>% Cover</u>	Species?	<u>Status</u>	Number of Dominant Species
1. Alnus rubra	45	Y	FAC	That Are OBL, FACW, or FAC: 2 (A)
2				Total Number of Dominant Species Across All Strata: 3 (B)
3				Percent of Dominant Species
4				That Are OBL, FACW, or FAC: 66 (A/B)
				· · · ·
	45	= Total Cove	er	Prevalence Index worksheet:
Sapling/Shrub Stratum (Plot size: 1m)				
1				
2				OBL species x 1 =
3				FACW species $12 \times 2 = 24$
4				FAC species 77 x 3 = 231
5				FACU species <u>62</u> x 4 = <u>248</u>
		= Total Cove	er	UPL species x 5 =
Herb Stratum (Plot size: 1m)				Column Totals: ¹⁵¹ (A) 503 (B)
1. Rubus armeniacus	30	Y	FACU	
2. Holcus lanatus	25	Y	FAC	Prevalence Index = B/A = 3.33
3. Fragaria chiloensis	10	N	FACU	
4. Symphyotrichum subspicatum	12	N	FACW	Hydrophytic Vegetation Indicators:
5. Plantago lanceolata	5	N	FACU	1 - Rapid Test for Hydrophytic Vegetation
6. Agrostis capillaris	5	N	FAC	X 2 - Dominance Test is >50%
7. Lotus uliginosus	2	N	FAC	3 - Prevalence Index is ≤3.0 ¹
8. Digitalis purpurea	2	N	FACU	4 - Morphological Adaptations ¹ (Provide supporting
9. Anthoxanthum odoratum	10	N	FACU	data in Remarks or on a separate sheet)
10. Rubus ursinus	5	Ν	FACU	5 - Wetland Non-Vascular Plants ¹
11				Problematic Hydrophytic Vegetation ¹ (Explain)
	106	= Total Cove	er	¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size:)				be present, unless disturbed or problematic.
1				
2				Underschutie
		= Total Cove	er	Hydrophytic Vegetation
% Bare Ground in Herb Stratum 0	_			Present? Yes x No
Remarks: Small herbaceous and shrub plot sizes du	e to topograp!	hic gradient.		1
		-		

SOIL

Sampling Point: TQ T2 P4

Profile Description	on: (Describe to Matrix	the depth	needed to docun	nent the ind Redox Feat		nfirm the a	absence of in	dicators.)	
	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Textu	ire	Remarks
		·					-		
		·		·					
		<u> </u>							
·		<u> </u>			·				
		<u> </u>							
·		<u> </u>			·				
<u> </u>				<u> </u>					
¹ Type: C=Concer	ntration, D=Deple	tion, RM=R	educed Matrix, CS	=Covered or	r Coated San	d Grains.	² Location:	PL=Pore Lir	ning, M=Matrix.
Hydric Soil Indi	cators: (Applica	ble to all L	RRs, unless othe	rwise noted	l.)	Ind	licators for Pr	oblematic	Hydric Soils ³ :
Histosol (A1)			Sandy Redox (S	5)			2 cm Muck (A	(10)	
Histic Epiped			Stripped Matrix (· · ·			Red Parent M		
Black Histic (Loamy Mucky M		except MLRA	A 1)	Very Shallow		
Hydrogen Su		(Loamy Gleyed N				Other (Explai	n in Remark	s)
	low Dark Surface Surface (A12)	(ATT)	Depleted Matrix Redox Dark Sur				³ Indiantara of	hudrophutio	vagatation and
	y Mineral (S1)		Depleted Dark Sur				wetland hydro		vegetation and
	ed Matrix (S4)		Redox Depressi				unless disturb		
			-					-	
Restrictive Layer ((if present):					_			
Type:					Hydric Soil	Present?	Yes	N	lo X
Depth (inches):									
Remarks: Soils are d									
was used: The elevat									
South Beach tide stat details. This plot is a									
						,		eg t	
HYDROLOGY									

Wetland Hydrology Indicators:							
Primary Indicators (minimum of one required; c	heck all that apply)	Secondary Indicators (2 or more required)					
 Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) 	Water-Stained Leaves (B9) (exc MLRA 1, 2, 4A, and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Li Roots (C3) Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils (C6) Stunted or Stressed Plants (D1) (LRR A) Other (Explain in Remarks)	water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)					
Field Observations: Surface Water Present? Yes No Water Table Present? Yes No Saturation Present? (includes capillary fringe) Yes No	Depth (inches): Depth (inches): Depth (inches):	Wetland Hydrology Present? Yes No X					
(includes capillary ininge) Yes Depth (includes) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: NOAA's Extreme Water Level website (<u>http://tidesandcurrents.noaa.gov/est/</u>) analyzes long-term water level monitoring data to determine the elevation that has a 50% probability of inundation each year (the elevation of biennial inundation, or the "50% exceedance elevation"). At the nearest available NOAA station with these data, the 50% exceedance elevation is 10.43 ft NAVD88, so all areas below 10.43 ft have wetland hydrology .							
Remarks: Elevation of this plot is estimated at	t 11.6 ft NAVD88 and is definitely abo	ove the 10.43 ft 50% exceedance elevation, based on the the hydrology criterion for a tidal wetland, since it is above the					

Sub-Appendix 4. Shapefile metadata (see following pages)

TQ_WL_polygon_OSP_20141201_LSB

Shapefile

Thumbnail Not Available

Tags

Tamara Quays, Tidal wetland restoration, planningCadastre, Estuary, inlandWaters, Oregon, Salmon River Estuary, boundaries, Wetland boundary, environment, oceans

Summary

This layer represents the wetland boundary at the Tamara Quays Wetland Restoration in the Salmon River Estuary, Oregon. Areas within the boundary meet the three jurisdictional wetland criteria (hydrology, soils, vegetation).

Description

This layer represents the wetland boundary at the Tamara Quays Wetland Restoration in the Salmon River Estuary, Oregon. Areas within the boundary meet the three jurisdictional wetland criteria (hydrology, soils, vegetation).

Credits

Estuary Technical Group Institute for Applied Ecology Corvallis, Oregon

Use limitations

There are no access and use limitations for this item.

Extent

West -123.981425 East -123.976152 North 45.022577 South 45.019132

Scale Range

Maximum (zoomed in) 1:5,000 Minimum (zoomed out) 1:150,000,000

ArcGIS Metadata ►

Topics and Keywords ►

THEMES OR CATEGORIES OF THE RESOURCE inlandWaters, environment, planningCadastre, boundaries, oceans

* CONTENT TYPE Downloadable Data EXPORT TO FGDC CSDGM XML FORMAT AS RESOURCE DESCRIPTION NO THEME KEYWORDS Tamara Quays, Tidal wetland restoration, Estuary, Oregon, Salmon River Estuary, Wetland boundary

THEME KEYWORDS oceans, planningCadastre, inlandWaters, boundaries, environment

THESAURUS TITLE ISO 19115 Topic Categories

Hide Thesaurus

Hide Topics and Keywords

Citation **>**

TITLE TQ_WL_polygon_OSP_20141201_LSB PUBLICATION DATE 2014-11-26 00:00:00

PRESENTATION FORMATS digital map FGDC GEOSPATIAL PRESENTATION FORMAT vector digital data

Hide Citation

Citation Contacts ►

RESPONSIBLE PARTY

ORGANIZATION'S NAME Michael Ewald, Estuary Technical Group, Institute for Applied Ecology, Geospatial Analyst CONTACT'S ROLE originator

RESPONSIBLE PARTY INDIVIDUAL'S NAME Laura Brophy ORGANIZATION'S NAME Estuary Technical Group, Institute for Applied Ecology CONTACT'S POSITION Director CONTACT'S ROLE principal investigator

CONTACT INFORMATION PHONE VOICE 541-752-7671

Address Type postal Delivery point P.O. Box 2855 City Corvallis Administrative area Oregon Postal code 97339 E-MAIL address brophyonline@gmail.com

Hide Contact information **A**

Hide Citation Contacts

Resource Details ►

DATASET LANGUAGES English (UNITED STATES) DATASET CHARACTER SET utf8 - 8 bit UCS Transfer Format STATUS completed SPATIAL REPRESENTATION TYPE vector

PROCESSING ENVIRONMENT Version 6.2 (Build 9200) ; Esri ArcGIS 10.2.1.3497

CREDITS

Estuary Technical Group Institute for Applied Ecology Corvallis, Oregon

ARCGIS ITEM PROPERTIES

* NAME TQ_WL_polygon_OSP_20141201_LSB

* SIZE 0.086

* LOCATION file://\\DELL-14Z\Users\Laura

Brophy\Documents\GIS_current\GPC_projects\TamaraQuays\wetland-delin\Actual_postproject\wl_delin_sep14\TQ_WL_polygon_OSP_20141201_LSB.shp

* ACCESS PROTOCOL Local Area Network

Hide Resource Details

Extents **>**

EXTENT GEOGRAPHIC EXTENT BOUNDING RECTANGLE WEST LONGITUDE -123.981425 EAST LONGITUDE -123.976044 SOUTH LATITUDE 45.019132 NORTH LATITUDE 45.02258

VERTICAL EXTENT

* MINIMUM VALUE 0.000000

* MAXIMUM VALUE 3.199800

EXTENT

DESCRIPTION

The wetland delineation and data collection were done on September 23, 2014

TEMPORAL EXTENT DATE AND TIME 2014-09-23

VERTICAL EXTENT

* MINIMUM VALUE 0.000000 * MAXIMUM VALUE 3.199800

EXTENT

GEOGRAPHIC EXTENT BOUNDING RECTANGLE EXTENT TYPE Extent used for searching * WEST LONGITUDE -123.981425 * EAST LONGITUDE -123.976152 * NORTH LATITUDE 45.022577 * SOUTH LATITUDE 45.019132 * EXTENT CONTAINS THE RESOURCE YES

VERTICAL EXTENT

* MINIMUM VALUE 0.000000

* MAXIMUM VALUE 3.199800

EXTENT IN THE ITEM'S COORDINATE SYSTEM

- * WEST LONGITUDE 412501.299312
- * EAST LONGITUDE 413814.944552
- * SOUTH LATITUDE 1210697.584716
- * NORTH LATITUDE 1211898.888777
- * EXTENT CONTAINS THE RESOURCE Yes

Hide Extents

Resource Points of Contact ►

POINT OF CONTACT INDIVIDUAL'S NAME Laura Brophy ORGANIZATION'S NAME Estuary Technical Group, Institute for Applied Ecology CONTACT'S POSITION Director CONTACT'S ROLE point of contact

CONTACT INFORMATION PHONE VOICE 541-752-7671

ADDRESS

TYPE postal DELIVERY POINT P.O. Box 2855 CITY Corvallis ADMINISTRATIVE AREA Oregon POSTAL CODE 97339 E-MAIL ADDRESS brophyonline@gmail.com

Hide Contact information **A**

Hide Resource Points of Contact ▲

Resource Maintenance ►

RESOURCE MAINTENANCE UPDATE FREQUENCY not planned

Hide Resource Maintenance

Spatial Reference

ARCGIS COORDINATE SYSTEM

- * TYPE Projected
- * GEOGRAPHIC COORDINATE REFERENCE GCS_North_American_1983
- * PROJECTION NAD_1983_Oregon_Statewide_Lambert_Feet_Intl
- * COORDINATE REFERENCE DETAILS
 - PROJECTED COORDINATE SYSTEM
 - WELL-KNOWN IDENTIFIER 2992 X ORIGIN -118489100
 - Y ORIGIN -97381100
 - XY SCALE 37592196.316242374
 - Z ORIGIN -1072.1419234999989
 - Z SCALE 4194304001953.124
 - M ORIGIN -100000
 - M SCALE 10000

XY TOLERANCE 0.0032808398950131233 Z TOLERANCE 0.001 M TOLERANCE 0.001 HIGH PRECISION true LATEST WELL-KNOWN IDENTIFIER 2992 WELL-KNOWN TEXT PROJCS["NAD_1983_Oregon_Statewide_Lambert_Feet_Intl",GEOGCS ["GCS_North_American_1983",DATUM["D_North_American_1983",SPHEROID ["GRS_1980",6378137.0,298.257222101]],PRIMEM["Greenwich",0.0],UNIT ["Degree",0.0174532925199433]],PROJECTION["Lambert_Conformal_Conic"],PARAMETER ["False_Easting",1312335.958005249],PARAMETER["False_Northing",0.0],PARAMETER ["Central_Meridian",-120.5],PARAMETER["Standard_Parallel_1",43.0],PARAMETER ["Standard_Parallel_2",45.5],PARAMETER["Latitude_Of_Origin",41.75],UNIT ["Foot",0.3048],AUTHORITY["EPSG",2992]]

REFERENCE SYSTEM IDENTIFIER

- * VALUE 2992
- * CODESPACE EPSG
- * VERSION 8.1.1

Hide Spatial Reference

Spatial Data Properties **>**

VECTOR **>** * LEVEL OF TOPOLOGY FOR THIS DATASET geometry only GEOMETRIC OBJECTS FEATURE CLASS NAME TQ_WL_polygon_OSP_20141201_LSB * OBJECT TYPE composite * OBJECT COUNT 1 Hide Vector ARCGIS FEATURE CLASS PROPERTIES FEATURE CLASS NAME TQ_WL_polygon_OSP_20141201_LSB * FEATURE TYPE Simple * GEOMETRY TYPE Polygon * HAS TOPOLOGY FALSE * FEATURE COUNT 1 * SPATIAL INDEX TRUE * LINEAR REFERENCING TRUE Hide ArcGIS Feature Class Properties Hide Spatial Data Properties Data Quality 🕨

SCOPE OF QUALITY INFORMATION RESOURCE LEVEL dataset

Hide Scope of quality information ▲

```
Hide Data Quality
```

Lineage 🕨

LINEAGE STATEMENT

Geoprocessing was conducted by Laura Brophy and Michael Ewald of the Estuary Technical Group (ETG) - Institute for Applied Ecology.

PROCESS STEP

WHEN THE PROCESS OCCURRED 2014-11-26 00:00:00 DESCRIPTION

A USFS as-built survey was provided to ETG in CAD format by Barb Ellis-Sugai, USFS hydrologist, and was georeferenced by ETG using the "warp" polynomial transformation tool in ArcGIS 10.2. To georeference the CAD layer, we matched landmark points in the CAD layer (particularly the Rowdy Creek channel and its banks) to the same landmarks in the 2008 USFS orthophoto. We verified that these landmarks also matched the same landmarks in the 2005 NAIP imagery (to ensure the USFS orthophoto was properly registered with NAIP).

PROCESS CONTACT

INDIVIDUAL'S NAME Laura Brophy ORGANIZATION'S NAME Estuary Technical Group, Institute for Applied Ecology CONTACT'S POSITION Director CONTACT'S ROLE processor

CONTACT INFORMATION PHONE VOICE 541-752-7671

ADDRESS

TYPE postal DELIVERY POINT P.O. Box 2855 CITY Corvallis ADMINISTRATIVE AREA Oregon POSTAL CODE 97339 E-MAIL ADDRESS brophyonline@gmail.com

Hide Contact information **A**

Hide Process step

PROCESS STEP

WHEN THE PROCESS OCCURRED 2014-11-26 00:00:00 DESCRIPTION

The west boundary of the wetland polygon (along the steep hillslope base) remained the same as in the pre-restoration delineation. The west boundary is located at a sharp topographic break to upland forest (as described in the pre-restoration delineation report), and the boundary was not altered by the restoration. The north boundary of the wetland was extended to include the former dike area, which was lowered to marsh elevation during restoration. The north boundary was established at an elevation of 3.25 m NAVD88 (10.7 ft NAVD88) using the USFS quarter-meter contour dataset based on 2007 LIDAR data. This elevation represents the extent of tidal wetland hydrology, as described in the report (the 3.25 m contour is the closest available contour to the average biennial inundation level of 3.18 m NAVD88 at NOAA's South Beach tide station).

The east and south sides of the polygon were generally created from the 10.5 ft

(NAVD88) contour obtained from the USFS as-built survey. This boundary represents the extent of tidal wetland hydrology based on the 1987 Corps delineation manual, pp 43-44; Part IV, Section B, step 8(i)(1). The 10.5 ft (NAVD88) contour is the closest available contour to the elevation of biennial inundation (the 50% exceedance elevation), determined from NOAA's Extreme Water Levels analysis at the nearest NOAA tide station for which this analysis is published online (South Beach #9435380). The 50% exceedance elevation at the South Beach station is 10.44 ft (3.18 m) NAVD88 (http://tidesandcurrents.noaa.gov/est/est_station.shtml?stnid=9435380).

Where the boundary between hydrophytic and non-hydrophytic vegetation fell below the 10.5 ft (NAVD88) contour, the wetland boundary followed the hydrophytic vegetation boundary (since the area within the boundary must meet vegetation, soils, and hydrology criteria for jurisdictional wetland status).

For details, see the wetland delineation report (Appendix to the 2014 Effectiveness Monitoring Report).

PROCESS CONTACT INDIVIDUAL'S NAME Michael Ewald ORGANIZATION'S NAME Estuary Technical Group, Institute for Applied Ecology CONTACT'S POSITION Geospatial Analyst CONTACT'S ROLE processor CONTACT INFORMATION PHONE VOICE 541-752-7671 **ADDRESS** TYPE postal DELIVERY POINT P.O. Box 2855 CITY Corvallis ADMINISTRATIVE AREA Oregon POSTAL CODE 97339 E-MAIL ADDRESS michael@appliedeco.org Hide Contact information Hide Process step ▲ PROCESS STEP WHEN THE PROCESS OCCURRED 2014-11-26 00:00:00 DESCRIPTION The lines established above were joined to create a wetland polygon (shapefile name: TQ WL polygon frAsBuilt OSP 20141125 LSB.shp). Hide Process step ▲

Hide Lineage

Distribution ►

DISTRIBUTION FORMAT * NAME Shapefile

TRANSFER OPTIONS * TRANSFER SIZE 0.086

Hide Distribution

Fields **>**

DETAILS FOR OBJECT TQ_WL_polygon_OSP_20141201_LSB ► * TYPE Feature Class

* ROW COUNT 1

FIELD FID

- * ALIAS FID
- * DATA TYPE OID
- * WIDTH 4
- * PRECISION 0
- * SCALE 0
- * FIELD DESCRIPTION Internal feature number.
- * DESCRIPTION SOURCE Esri
 - ____

* DESCRIPTION OF VALUES Sequential unique whole numbers that are automatically generated.

```
Hide Field FID ▲
```

FIELD Shape ►

- * ALIAS Shape
- * DATA TYPE Geometry
- * WIDTH 0
- * PRECISION 0
- * SCALE 0
- * FIELD DESCRIPTION
 - Feature geometry.
- * DESCRIPTION SOURCE Esri
- * DESCRIPTION OF VALUES Coordinates defining the features.

Hide Field Shape 🔺

```
FIELD acres
```

- * ALIAS acres
- * DATA TYPE Double
- * WIDTH 19

```
* PRECISION 0
  * SCALE 0
 Hide Field acres ▲
FIELD perim ft
  * ALIAS perim_ft
  * DATA TYPE Double
  * WIDTH 19
  * PRECISION 0
  * SCALE 0
 Hide Field perim_ft ▲
FIELD perim_m
  * ALIAS perim_m
  * DATA TYPE Double
  * WIDTH 19
  * PRECISION 0
  * SCALE 0
 Hide Field perim_m ▲
FIELD hectares
  * ALIAS hectares
  * DATA TYPE Double
  * WIDTH 19
  * PRECISION 0
  * SCALE 0
 Hide Field hectares
```

Hide Details for object TQ_WL_polygon_OSP_20141201_LSB ▲

Hide Fields 🔺

Metadata Details **>**

METADATA LANGUAGE English (UNITED STATES) METADATA CHARACTER SET utf8 - 8 bit UCS Transfer Format

SCOPE OF THE DATA DESCRIBED BY THE METADATA dataset SCOPE NAME * dataset

LAST UPDATE 2014-11-26

ARCGIS METADATA PROPERTIES METADATA FORMAT ArcGIS 1.0 METADATA STYLE FGDC CSDGM Metadata STANDARD OR PROFILE USED TO EDIT METADATA FGDC

CREATED IN ARCGIS FOR THE ITEM 2014-11-25 17:54:58 LAST MODIFIED IN ARCGIS FOR THE ITEM 2014-12-01 10:39:23 AUTOMATIC UPDATES HAVE BEEN PERFORMED Yes LAST UPDATE 2014-12-01 10:30:51

Hide Metadata Details 🔺

Metadata Contacts **>**

METADATA CONTACT INDIVIDUAL'S NAME Laura Brophy ORGANIZATION'S NAME Estuary Technical Group, Institute for Applied Ecology CONTACT'S POSITION Director CONTACT'S ROLE point of contact

CONTACT INFORMATION PHONE VOICE 541-752-7671

Address Type postal Delivery point P.O. Box 2855 City Corvallis Administrative area Oregon Postal code 97339 E-MAIL Address brophyonline@gmail.com

Hide Contact information **A**

Hide Metadata Contacts 🔺

Metadata Maintenance

MAINTENANCE UPDATE FREQUENCY not planned

Hide Metadata Maintenance

FGDC Metadata (read-only) ▼

TQ_hydrophytic_veg_polygon_OSP_20141130_LSB Shapefile

Thumbnail Not Available

Tags

Hydrophytic vegetation, Tidal wetland restoration, Tamara Quays, Salmon River Estuary, Estuary, Oregon

Summary

This layer represents the upper extent of hydrophytic vegetation at the Tamara Quays Wetland Restoration in the Salmon River Estuary, Oregon.

Description

This layer represents the upper extent of hydrophytic vegetation at the Tamara Quays Wetland Restoration in the Salmon River Estuary, Oregon. GPS data collection and subsequent geoprocessing were conducted by Laura Brophy and Michael Ewald of the Estuary Technical Group (ETG) - Institute for Applied Ecology. GPS data was collected using dual-frequency realtime kinematic (RTK) GPS/GNSS receivers and techniques, and meets the accuracy requirements of OAR 141-090-0035(11). The data was collected on September 23, 2014 at the Tamara Quays Wetland Restoration Project in the Salmon River Estuary, Oregon.

Credits

Estuary Technical Group Institute for Applied Ecology Corvallis, Oregon

Use limitations There are no access and use limitations for this item.

Extent

West	-123.981425	East	-123.976044
North	45.022580	South	45.019132

Scale Range

Maximum (zoomed in) 1:5,000 Minimum (zoomed out) 1:150,000,000

ArcGIS Metadata ►

Topics and Keywords ►

THEMES OR CATEGORIES OF THE RESOURCE boundaries, environment, inlandWaters, oceans,

file:///C:/Users/Laura%20Brophy/AppData/Local/Temp/arc18C8/tmpB457.tmp.htm 11/30/2014

planningCadastre

* CONTENT TYPE Downloadable Data EXPORT TO FGDC CSDGM XML FORMAT AS RESOURCE DESCRIPTION NO

Hide Topics and Keywords

Citation **>**

TITLE TQ_hydrophytic_veg_polygon_OSP_20141130_LSB CREATION DATE 2014-11-26 00:00:00 PUBLICATION DATE 2014-11-26 00:00:00 REVISION DATE 2014-11-26 00:00:00

PRESENTATION FORMATS * digital map

Hide Citation **A**

Citation Contacts

RESPONSIBLE PARTY

INDIVIDUAL'S NAME Laura Brophy ORGANIZATION'S NAME Estuary Technical Group, Institute for Applied Ecology CONTACT'S POSITION Director CONTACT'S ROLE principal investigator

CONTACT INFORMATION PHONE VOICE 541-752-7671

ADDRESS

TYPE postal DELIVERY POINT P.O. Box 2855 CITY Corvallis ADMINISTRATIVE AREA Oregon POSTAL CODE 97339 E-MAIL ADDRESS brophyonline@gmail.com

Hide Contact information **A**

RESPONSIBLE PARTY INDIVIDUAL'S NAME Michael Ewald ORGANIZATION'S NAME Estuary Technical Group, Institute for Applied Ecology CONTACT'S POSITION Geospatial Analyst CONTACT'S ROLE originator

CONTACT INFORMATION PHONE VOICE 541-752-7671

Address Type postal Delivery point P.O. Box 2855 City Corvallis Administrative area Oregon Postal code 97339 E-MAIL ADDRESS michael@appliedeco.org

Hide Contact information **A**

Hide Citation Contacts

Resource Details ►

DATASET LANGUAGES * English (UNITED STATES) DATASET CHARACTER SET utf8 - 8 bit UCS Transfer Format

STATUS completed SPATIAL REPRESENTATION TYPE * vector

* PROCESSING ENVIRONMENT Microsoft Windows 7 Version 6.1 (Build 7601) Service Pack 1; Esri ArcGIS 10.2.0.3348

CREDITS

Estuary Technical Group Institute for Applied Ecology Corvallis, Oregon

ARCGIS ITEM PROPERTIES

* NAME TQ_hydrophytic_veg_polygon_OSP_20141130_LSB * SIZE 0.081 * LOCATION file://\\DELL-14Z\Users\Laura Brophy\Documents\GIS_current\GPC_projects\TamaraQuays\wetland-delin\Actual_postproject\wl_delin_sep14\TQ_hydrophytic_veg_polygon_OSP_20141130_LSB.shp * ACCESS PROTOCOL Local Area Network

Hide Resource Details

Extents 🕨

```
EXTENT
  DESCRIPTION
    Data was collected on September 23, 2014.
  GEOGRAPHIC EXTENT
    BOUNDING RECTANGLE
      EXTENT TYPE Extent used for searching
      * WEST LONGITUDE -123.981425
      * EAST LONGITUDE -123.976044
      * NORTH LATITUDE 45.022580
       * SOUTH LATITUDE 45.019132
      * EXTENT CONTAINS THE RESOURCE Yes
  TEMPORAL EXTENT
    DATE AND TIME 2014-09-23 00:00:00
  VERTICAL EXTENT
    * MINIMUM VALUE 0.000000
    * MAXIMUM VALUE 4.150600
EXTENT IN THE ITEM'S COORDINATE SYSTEM
  * WEST LONGITUDE 412501.299312
```

* EAST LONGITUDE 413842.786664 * SOUTH LATITUDE 1210697.584716 * NORTH LATITUDE 1211898.888777 * EXTENT CONTAINS THE RESOURCE Yes

Hide Extents

Resource Points of Contact >

POINT OF CONTACT INDIVIDUAL'S NAME Laura Brophy ORGANIZATION'S NAME Estuary Technical Group, Institute for Applied Ecology CONTACT'S POSITION Director CONTACT'S ROLE principal investigator

CONTACT INFORMATION PHONE VOICE 541-752-7671

ADDRESS

TYPE postal DELIVERY POINT P.O. Box 2855 CITY Corvallis ADMINISTRATIVE AREA Oregon POSTAL CODE 97339 E-MAIL ADDRESS brophyonline@gmail.com

Hide Contact information **A**

Hide Resource Points of Contact

Resource Maintenance ►

RESOURCE MAINTENANCE UPDATE FREQUENCY not planned

Hide Resource Maintenance

Spatial Reference

ARCGIS COORDINATE SYSTEM

- * TYPE Projected
- * GEOGRAPHIC COORDINATE REFERENCE GCS_North_American_1983
- * PROJECTION NAD_1983_Oregon_Statewide_Lambert_Feet_Intl
- * COORDINATE REFERENCE DETAILS PROJECTED COORDINATE SYSTEM WELL-KNOWN IDENTIFIER 2992 X ORIGIN -118489100 Y ORIGIN -97381100 XY SCALE 37592196.316242374 Z ORIGIN -1071.6665235000032 Z SCALE 4194304001953.124 M ORIGIN -100000 M SCALE 10000 XY TOLERANCE 0.0032808398950131233 Z TOLERANCE 0.001

M TOLERANCE 0.001 HIGH PRECISION true LATEST WELL-KNOWN IDENTIFIER 2992 WELL-KNOWN TEXT PROJCS["NAD_1983_Oregon_Statewide_Lambert_Feet_Intl",GEOGCS ["GCS_North_American_1983",DATUM["D_North_American_1983",SPHEROID ["GRS_1980",6378137.0,298.257222101]],PRIMEM["Greenwich",0.0],UNIT ["Degree",0.0174532925199433]],PROJECTION["Lambert_Conformal_Conic"],PARAMETER ["False_Easting",1312335.958005249],PARAMETER["False_Northing",0.0],PARAMETER ["Central_Meridian",-120.5],PARAMETER["Standard_Parallel_1",43.0],PARAMETER ["Standard_Parallel_2",45.5],PARAMETER["Latitude_Of_Origin",41.75],UNIT ["Foot",0.3048],AUTHORITY["EPSG",2992]]

REFERENCE SYSTEM IDENTIFIER

- * VALUE 2992
- * CODESPACE EPSG
- * VERSION 8.1.1

Hide Spatial Reference

Spatial Data Properties

VECTOR **>**

* LEVEL OF TOPOLOGY FOR THIS DATASET geometry only

GEOMETRIC OBJECTS

FEATURE CLASS NAME TQ_hydrophytic_veg_polygon_OSP_20141130_LSB

- * OBJECT TYPE composite
- * OBJECT COUNT 1

Hide Vector ▲

Grid 🕨

TRANSFORMATION PARAMETERS ARE AVAILABLE NO

Hide Grid 🔺

```
ARCGIS FEATURE CLASS PROPERTIES
```

```
FEATURE CLASS NAME TQ_hydrophytic_veg_polygon_OSP_20141130_LSB
```

- * FEATURE TYPE Simple
- * GEOMETRY TYPE Polygon
- * HAS TOPOLOGY FALSE
- * FEATURE COUNT 1
- * SPATIAL INDEX TRUE
- * LINEAR REFERENCING TRUE

Hide ArcGIS Feature Class Properties ▲

Hide Spatial Data Properties

Lineage 🕨

LINEAGE STATEMENT

GPS data collection and subsequent geoprocessing were conducted by Laura Brophy and Michael Ewald of the Estuary Technical Group (ETG) - Institute for Applied Ecology. GPS data was collected using dual-frequency real-time kinematic (RTK) GPS/GNSS receivers and techniques, and meets the accuracy requirements of OAR 141-090-0035(11). The data was collected on September 23, 2014 at the Tamara Quays Wetland Restoration Project in the Salmon River Estuary, Oregon.

The GPS data was collected using a Spectra Precision ProMark 220 GNSS Receiver equipped with an Ashtech ASH111661 GNSS Survey Antenna running the Spectra Precision FASTSurvey (version 4.1.11) data collector software. Measurements were differentially corrected in real time using the Oregon Realtime Correction Network (ORGN) MAX real-time kinematic (RTK) corrector. See http://www.oregon.gov/ODOT/HWY/THEORGN for more information about the ORGN. The survey antenna was mounted on a survey rod fitted with an 11 cm diameter topographic shoe to prevent the rod point from penetrating the soil surface.

A measurement was taken approximately every eight meters along the line representing the upper extent of hydrophytic vegetation. At each measurement location, ten differentially corrected RTK GPS observations (at a rate of one measurements per second) were averaged to yield the final position for that point. Vegetation was cleared at the base of the survey rod prior to each measurement to ensure that the elevation of the point represented the soil surface. As mentioned above, a topographic shoe was fitted to the survey rod to prevent the tip from penetrating the soil surface.

The data was exported from the field controller to a tabular spreadsheet format, reprojected from NAD83 UTM Zone 10N (EPSG: 26910) to Oregon State Plane (EPSG: 2992) using ESRI ArcGIS (version 10.2.1) and analyzed to ensure data by comparing our measurement to the published position of a high-quality benchmark (PID: AJ1989) in the National Geodetic Survey (NGS) database and repeated measurements of control points within the project area.

According to FGDC Geospatial Positioning Accuracy Standards, the GPS data tested 0.016 meters horizontal accuracy and 0.051 meters vertical accuracy at 95% confidence level. These statistics were derived using a measurement of a high-quality benchmark (PID: AJ1989) published in the NGS database and three repeated measurements of three control points within the project area.

PROCESS STEP

WHEN THE PROCESS OCCURRED 2014-11-26 00:00:00 DESCRIPTION

GPS points were collected along the line representing the upper extent of hydrophytic vegetation on the east and south sides of the wetland. The points were converted to a line feature using the "points to line" geoprocessing tool in ArcGIS 10.2. This line forms the east boundary of the hydrophytic vegetation polygon. The west boundary of the hydrophytic vegetation polygon. The west boundary of the hydrophytic vegetation polygon. The west boundary of the hydrophytic vegetation wetland delineation. The west boundary is located at a sharp topographic break to upland forest (as described in the pre-restoration delineation report), and the boundary was not altered by the restoration. The north boundary of the hydrophytic vegetation polygon is the same as the delineated wetland boundary, and includes the former dike area, which was lowered to marsh elevation during restoration. The north boundary was established at an elevation of 3.25 m NAVD88 (10.7 ft NAVD88) using the USFS quarter-meter contour dataset based on 2007 LIDAR data. This elevation represents the extent of tidal wetland hydrology, as described in the report (the 3.25 m contour is the closest available contour to the average biennial inundation level of 3.18 m NAVD88 at NOAA's South Beach tide station).

PROCESS CONTACT INDIVIDUAL'S NAME Laura Brophy ORGANIZATION'S NAME Estuary Technical Group, Institute for Applied Ecology CONTACT'S POSITION Director CONTACT'S ROLE principal investigator

CONTACT INFORMATION PHONE VOICE 541-752-7671

ADDRESS TYPE postal DELIVERY POINT P.O. Box 2855 **CITY** Corvallis ADMINISTRATIVE AREA Oregon POSTAL CODE 97339 E-MAIL ADDRESS brophyonline@gmail.com

Hide Contact information

Hide Process step ▲

PROCESS STEP WHEN THE PROCESS OCCURRED 2014-11-26 00:00:00 DESCRIPTION The lines established above were joined to create a polygon (shapefile name:

TQ_hydrophytic_veg_polygon_OSP_20141130_LSB.shp).

PROCESS CONTACT INDIVIDUAL'S NAME Michael Ewald ORGANIZATION'S NAME Estuary Technical Group, Institute for Applied Ecology CONTACT'S POSITION Geospatial Analyst CONTACT'S ROLE originator

CONTACT INFORMATION PHONE VOICE 541-752-7671

ADDRESS TYPE postal DELIVERY POINT P.O. Box 2855 CITY Corvallis ADMINISTRATIVE AREA Oregon POSTAL CODE 97339 E-MAIL ADDRESS michael@appliedeco.org

Hide Contact information

Hide Process step ▲

Hide Lineage

Distribution ►

file:///C:/Users/Laura%20Brophy/AppData/Local/Temp/arc18C8/tmpB457.tmp.htm 11/30/2014 DISTRIBUTION FORMAT * NAME Shapefile

TRANSFER OPTIONS * TRANSFER SIZE 0.081

Hide Distribution

Fields **>**

DETAILS FOR OBJECT TQ_hydrophytic_veg_polygon_OSP_20141130_LSB >

- * TYPE Feature Class
- * ROW COUNT 1

FIELD FID ►

- * ALIAS FID
- * DATA TYPE OID
- * WIDTH 4
- * PRECISION 0
- * SCALE 0
- * FIELD DESCRIPTION Internal feature number.
- * DESCRIPTION SOURCE Esri
 - LSII
- * DESCRIPTION OF VALUES Sequential unique whole numbers that are automatically generated.

Hide Field FID ▲

FIELD Shape ►

- * ALIAS Shape
- * DATA TYPE Geometry
- * WIDTH 0
- * PRECISION 0
- * SCALE 0
- * FIELD DESCRIPTION
 - Feature geometry.
- * DESCRIPTION SOURCE Esri
- * DESCRIPTION OF VALUES Coordinates defining the features.

Hide Field Shape 🔺

FIELD acres

- * ALIAS acres
- * DATA TYPE Double
- * WIDTH 19

* PRECISION 0 * SCALE 0 FIELD DESCRIPTION The area of the polygon, reported in acres

```
Hide Field acres ▲
```

```
FIELD hectares ►

* ALIAS hectares

* DATA TYPE Double

* WIDTH 19

* PRECISION 0

* SCALE 0

FIELD DESCRIPTION

The area of the polygon, reported in hectares
```

Hide Field hectares

```
FIELD perim_ft ►

* ALIAS perim_ft

* DATA TYPE Double

* WIDTH 19

* PRECISION 0

* SCALE 0

FIELD DESCRIPTION

The perimeter of the polygon, reported in feet

Hide Field perim_ft ▲

FIELD perim_m ►
```

```
* ALIAS perim_m
* DATA TYPE Double
* WIDTH 19
* PRECISION 0
* SCALE 0
FIELD DESCRIPTION
The perimeter of the polygon, reported in m
```

Hide Field perim_m ▲

Hide Details for object TQ_hydrophytic_veg_polygon_OSP_20141130_LSB ▲

Hide Fields 🔺

Metadata Details 🕨

- * METADATA LANGUAGE English (UNITED STATES)
- * METADATA CHARACTER SET utf8 8 bit UCS Transfer Format

SCOPE OF THE DATA DESCRIBED BY THE METADATA * dataset SCOPE NAME * dataset

* LAST UPDATE 2014-11-30

ARCGIS METADATA PROPERTIES METADATA FORMAT ArcGIS 1.0 METADATA STYLE FGDC CSDGM Metadata STANDARD OR PROFILE USED TO EDIT METADATA FGDC

CREATED IN ARCGIS FOR THE ITEM 2014-11-25 17:56:04 LAST MODIFIED IN ARCGIS FOR THE ITEM 2014-11-30 22:23:32

AUTOMATIC UPDATES HAVE BEEN PERFORMED Yes LAST UPDATE 2014-11-30 22:16:05

Hide Metadata Details

Metadata Contacts **>**

METADATA CONTACT INDIVIDUAL'S NAME Laura Brophy ORGANIZATION'S NAME Estuary Technical Group, Institute for Applied Ecology CONTACT'S POSITION Director CONTACT'S ROLE principal investigator

CONTACT INFORMATION PHONE VOICE 541-752-7671

Address Type postal Delivery point P.O. Box 2855 City Corvallis Administrative area Oregon Postal code 97339 E-MAIL Address brophyonline@gmail.com

Hide Contact information

Hide Metadata Contacts

Metadata Maintenance 🕨

MAINTENANCE UPDATE FREQUENCY not planned

Hide Metadata Maintenance

FGDC Metadata (read-only) ▼