

Predictive provenancing: can southern sourced seeds be used in Midwest restoration efforts? Christopher Woolridge

Chicago Botanic Garden and Northwestern University

How to best source seed?

- Managers make best attempt at obtaining local genotypes
 - "Local" is different for everyone
 - Chicagoland report: 25 200 mile radius (Saari et al. 2011)
- Local adaptation

•With changing climate and restricted gene flow, need to provide for adaptive potential

National Native Seed Strategy – Objective 2.1

 Characterize genetic variation of restoration species to delineate seed zones and provide seed transfer guidelines for current and projected environmental conditions

Predictive provenancing

- Transfer of plants adapted to environments with similar predicted conditions of recipient site
 - Potential to foster climate adaptive populations
 - Not much empirical testing for non-timber species
- How will they perform in current conditions?
 - Extreme weather events
 - Frosts, differing phenology (pollinator mismatch)

Pinus albicaulis – Whitebark pine Bower & Aitken (2008)

Study objectives

 Are southern sources suitable to use? If so, how much?

 Compare fitness and phenology of potential sources for three short-lived prairie species

Species

 Chamaecrista fasciculata (Partridge pea)

Fabaceae

Annual

Rudbeckia hirta
(Black-eyed Susan)

Asteraceae

 Biennial or short-lived

Lobelia inflata
(Indian tobacco)

Campanulaceae

Annual

Common garden

- Rollins Savanna
 - Lake County Forest Preserves, IL
- 3 replicate plots for each species x source combination
 - Seeded at ~500 PLS/m²
 - December 2015

Common Garden Experiment Grayslake, IL

Methods and preliminary results

Germination success

- Phenology
 - Germination
 - Flowering
- Survival to flowering

Fitness

- Biomass and density
- Inflorescences

Germination

- Germination tests in Illinois conditions
 - Cold, moist stratification: 10 weeks
 - Incubation at 20/10 °C
- Seedlings grown up in growth chambers
 - 8 weeks at 25 °C
- Transferred to greenhouse

Germination

Germination

Emergence and seedling survival

- Backtrack through 10 weeks of pictures
- Track emergence (success and timing) and seedling survival

Chamaecrista fasciculata

Biomass and Density

Chamaecrista fasiculata

Rudbeckia hirta

Seed set Ongoing Pod processing

Head cleaning

Flowering phenology (Flowering length)

Flowering phenology (Flower to pod ratio)

Conclusions

•Germination: Northern sources were slower and had lower success

- •Phenology: Southern sources have delayed flowering in both species
 - Differences in phenology = effects on fitness?
- •Greater differences seen in *C. fasiculata* than *R. hirta*
 - C. fasiculata: Northern had highest survival; lowest biomass
 - *R. hirta*: No differences in biomass or inflorescences

Next steps

Aster analysis – connect all life stages • Seed mix design

What effect will phenology have on fitness?

Emergence timing and seedling survival in field are critical part of story

Phenology

 Compare time to germination in lab with time to emergence in field

Examine weather records from growing season

Acknowledgements

- Jeremie Fant
- Andrea Kramer
- Emily Dangremond
- Kelly Schultz
- Michael Fuerte
- Shaw Family

- 2014 and 2015 PBC cohort
- Grace Guarraia
- Susie Mahon
- Deborah Rodriguez
- Samantha Root
- Laura Steger
- Bernard Woolridge
- Jacob Zeldin

LAKE COUNTY FOREST PRESERVES

Institute for Applied Ecology

Questions?

Assumptions and limitations

- Limited replication of provenance and common garden site
- Weather is extremely variable
 - Only measuring fitness in one or two growth years
 - Not a stressful year in Chicago
- Commercial seed providers
 - Reliable in geographic source
 - Genetically diverse seeds (not growing clones)

Assisted gene flow

- Translocation of individuals to facilitate adaptation to anticipated climate conditions
- Previously used for small, fragmented populations of threatened species
- Historic prairie was large, continuous landscape
 - 1% of historic cover
 - Remnants and restorations are heavily fragmented (agriculture, development)

*Map credit: Roger C. Anderson

Species and sources

Species	Northern	Local	Southern
Allium cernuum	Carver Co. MN – Collected	Cook Co. IL – Collected	Franklin Co. MO – Missouri Wildflowers
Chamaecrista fasciculata	Wright Co. MN – Minnesota Native Landscapes	Grant Co. WI – Prairie Moon	Cole Co. MO – Missouri Wildflowers
Lobelia inflata	Vernon Co. WI – Prairie Moon	Lafayette Co. WI – Dixon Seed Bank	Bond Co. IL – Dixon Seed Bank
Rudbeckia hirta*	*	Kenosha Co. WI – Prairie Moon	Barton Co. MO – Missouri Wildflowers
Sisyrinchium campestre	Winona Co. MN – Shooting Star	Vernon Co. WI – Prairie Moon	Cole Co. MO – Missouri Wildflowers

* Northern source could not be obtained in time for planting

Expected results

- Phenology
 - Earlier flowering and emergence should be correlated with shorter growing seasons
- Fitness
 - Earlier flowering onset = higher seed set?
 - Biomass may be higher in southern sources due to growing season

Local adaptation varies by species

Stronger local adaptation

More prone to maladaptation

Selfing

Gravity-dispersed

Annuals

Wide range

Long-term occupants

Weaker local adaptation

More robust to transplantation

Wind-pollinated Seed-dispersed Recent range expansion Uniform habitats

Conclusion

In *C. fasciculata,*

Results of germination tests and survival to flowering differ

- Tracking individuals through pictures will clarify
- Impacts of differing phenology on fitness
 - Germination
 - Emergence
 - Flowering (Onset and duration)

Outlook for Chicago area

- Chicago will become warmer and wetter
- Evolutionary constraints may prevent populations from keeping pace with change
 - Fragmented populations
 - Restricted gene flow

http://www.illinoisinfocus.com/northerly-island.html

Conclusion – Chamaecrista fasiculata

Fitness

- <u>Germination</u>: southern source more than 2 times the amount of the northern source
- <u>Survival to flowering</u>: northern source had 4 times higher rate than the southern source

Phenology

- Germination: All fairly equal
- <u>Flowering</u>: southern source ratio was 25 times the northern source

Conclusion – Rudbeckia hirta

Fitness

- <u>Germination</u>: both sources low, not different
- <u>Survival to flowering</u>: both sources low, not different

Phenology

- <u>Germination</u>: southern source occurred an average of 9 days earlier
- <u>Flowering</u>: southern source began an average of 6 days earlier
- Both in line with adaptation to longer growing season

The preceding presentation was delivered at the

2017 National Native Seed Conference Washington, D.C. February 13-16, 2017

This and additional presentations available at <u>http://nativeseed.info</u>

