GENETIC AND CYTOTYPIC VARIABILITY IN A DOMINANT SOUTHWESTERN GRASS (BOUTELOUA GRACILIS) Implications for Restoration and

Seed Source Conservation

Katrina Tso^{1,}, Gery Allan¹, Brad Butterfield¹, Liza Holeski¹, and Troy Wood² ¹Dept. of Biological Sciences, NAU ²USGS, Flagstaff AZ

LOCAL ADAPTATION

•Local adaptation:

- Is likely to influence the response of a species to climate change
- May be predictive of the success of cultivated seeds for restoration

purposes

RESTORATION IN THE SOUTHWEST

- Primarily driven by wildfire
- 7.2 million AC annually in US (3X AC burned in 1980s)
- Forest Service alone spends
 \$3.3 million/year on
 seeding

Peppin et al., 2010 National Interagency Fire Center

CULTIVARS AND NATURAL POPULATIONS

- Locally adapted seed recognized for increased restoration success
- Cultivated varieties and selection pressure of agriculture:
 - Selection for large biomass, high seed yield
 - Potential loss of traits that allow for survival in a variable wildland climate

Schroder & Prasse, 2013

OBJECTIVES

 Genetic structure of Bouteloua gracilis on the Colorado Plateau

2) Correlation with key environmental variables

3) Genetic differentiation of wild populations and cultivars

Sevilleta LTER Alamillo, NM 5,020 ft

http://sev.lternet.edu

High Country Garden Santa Fe, NM http://www.highcountrygardens.com/ 7,200 ft

STUDY SITE: THE COLORADO PLATEAU

- 140,000 sq. miles in the 4- corners region
- Sonoran Desert to Alpine, 3,000-14,000 ft
- Dominated by semiarid conditions with broad distribution of annual precip
 - Average of 10"
 - Low elevations as little as 5"
 - >8,000 ft., 20"; >11,000 ft, 36"
- Variable temperatures
 - Lower elevations: 20-90 F
 - Higher elevations: 0-70 F

Foos, 1999

STUDY SPECIES: BOUTELOUA GRACILIS

A. Hitchcock

- Broadly distributed perennial grass
- Variable habitat types from semi-desert
- grass
 High and r
 Br
 Ad
 Ea
 Ye

GENETIC FINGERPRINTING ANALYSIS

- Amplified fragment length polymorphism (AFLP)
 - Rapid screening technique
 - Generates anonymous markers throughout the genome
- Sampling
 - 385 individuals
 - 44 natural sites, 5 cultivars
 - 3 primer combinations
- 100 markers scored
 - 6 identified as likely under selection

ENVIRONMENTAL ANALYSIS

• Temperature

- Mean Annual Temperature
- Temperature Seasonality
- Precipitation
 - Mean Annual Precipitation
 - Precipitation Seasonality
 - Precipitation Coldest Quarter
 - Precipitation Driest Quarter

MEAN ANNUAL TEMPERATURE

Butterfield and Wood, 2015

© 2016 © 2018

je Landsa

Butterfield and Wood, 2015

GENETIC RESPONSE TO CLIMATE: POPULARESS

Genetic variation is significantly correlated to all environmental variables across natural populations, but not across cultivated varieties

SUMMARY

NATURAL POPULATIONS

- 2 genetically distinct populations:
 - Colorado Plateau
 - Off Colorado Plateau
- Genetic variation correlated to:
 - Environment
 - Population
 - Cytotype
- Colonization history; adaptive differences in cytotypes and populations

CULTIVATED VARIETIES

- Group with only 5 of 44 natural populations
 - Off-Plateau
- Genetic variation not correlated to environment
- Suggested loss of locally adapted traits in response to agricultural environment

FUTURE RESEARCH & MANAGEMENT RECOMMENDATIONS

• Future Research commendations

- cpDNA analysis, additional sampling, reciprocaler transplant experiment
- Usevdatation development specific to Colorado Pledevelop models to identify seed transfer zones
 • Frefor this ispecies across the Colorado Plateauinto Culcilimate change models to aid in assisted gene flow research and efforts

The preceding presentation was delivered at the

2017 National Native Seed Conference Washington, D.C. February 13-16, 2017

This and additional presentations available at <u>http://nativeseed.info</u>

