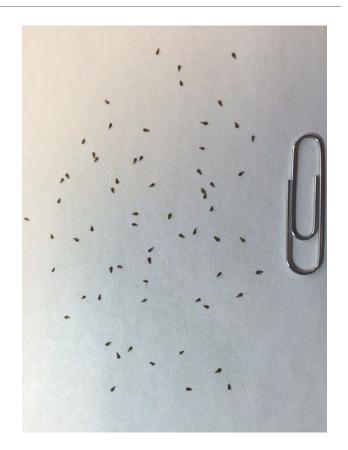
Techniques to determine big sagebrush subspecies in seed lots and why it's important

BRYCE RICHARDSON

USDA FOREST SERVICE, RMRS, PROVO, UTAH

Outline


ODOES determining big sagebrush subspecies matter

•Seed weight findings

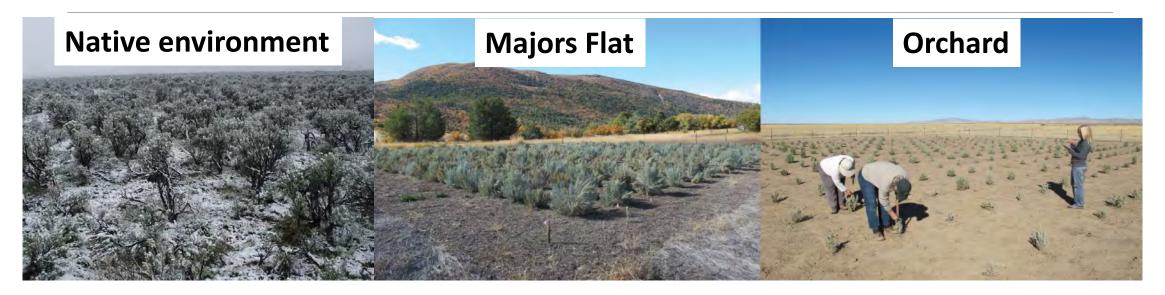
OAnalysis of BLMs seed purchases

 Use of a plate spectrophotometer for empirical measurements of UV fluorescence

• Development of a seed testing protocol

Subspecies: does it matter?

 Research has shown big sagebrush subspecies occupy different habitats:

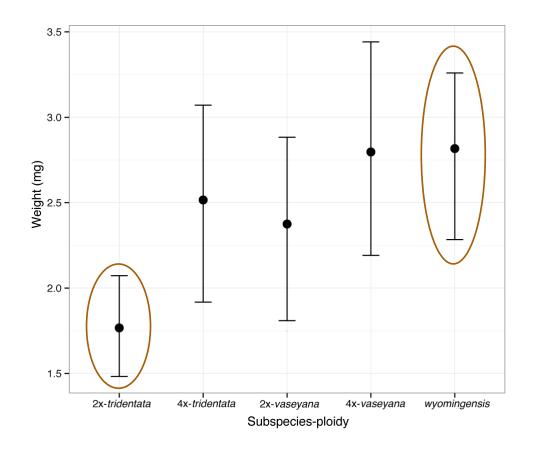

- Mtn big sagebrush higher elevation, mesic
- Basin big sagebrush lower elevation, deep soils
- Wyoming big sagebrush lower elevation, dry shallow soils
- But overlap can occur at small spatial scales
 depending on the environmental heterogeneity

oSeed collection perspective

Subspecies: does it matter?

- BLM and Forest Service policy states that the right seed has to be place in the right place
- The mindset has been taxonomic purity is key
 - Big sagebrush is certified to subspecies based on onsite evaluations
 - However, because of scale at which seed is collected and the scale at which restoration is conducted few if any seed collections are purely one subspecies
- Two factors that would better ensure establishment and resiliency of sagebrush restoration:
- 1. Post collection evaluation of the composition of subspecies
- 2. Matching climate of seed collection to restoration site (seed zones)

Seed weight study: Seeds collected from 3 different environments


Garden	Elev (m)	MTCM °C	MTWM °C	MAP (in)	Climate
Majors, UT	2105	-4.7	20.8	20.2	Cool/wet
Orchard, ID	974	-2.9	25.0	10.1	Warm/dry

Mixed model results

Random effects		Variance	SD	<i>P</i> value
Collection		0.0116	0.1080	0.748
Year × Collection		0.0247	0.1573	0.004
Population × (Year × Garden)		0.0963	0.3104	<0.0001
Family × (Population × (Year × Collection)		0.1272	0.3566	<0.0001
Residual		0.0466		
Fixed effects		Estimate	SE	<i>P</i> value
2x- <i>tridentata</i> (intercept)		1.7655	0.1044	0.0032
4x-tridentata		0.7150	0.1096	<0.0001
2x-vaseyana		0.5682	0.0943	<0.0001
4x-vaseyana		1.0412	0.1286	<0.0001
wyomingensis		0.9926	0.0751	<0.0001

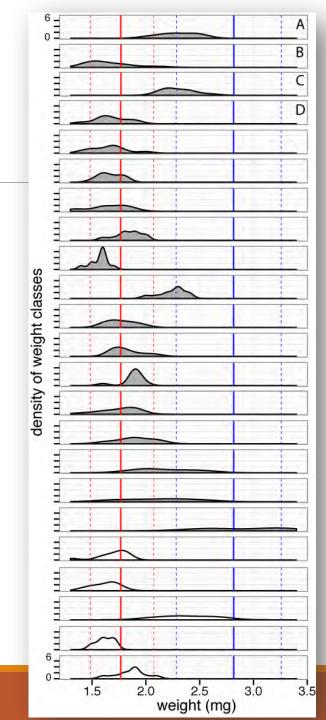
Richardson et al 2015

Confidence intervals

99% Confidence intervals

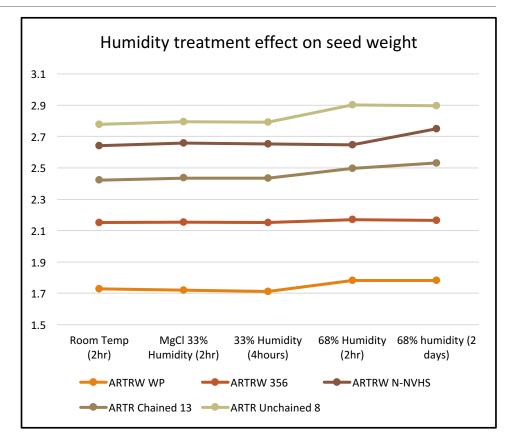
- No overlap between 2x-tridentata and wyomingensis
- Expect seed lots with seed weights > 2.2 mg would have a higher proportion of Wyoming big sagebrush

Comparison of subspecies weight parameters to commercial seed lots

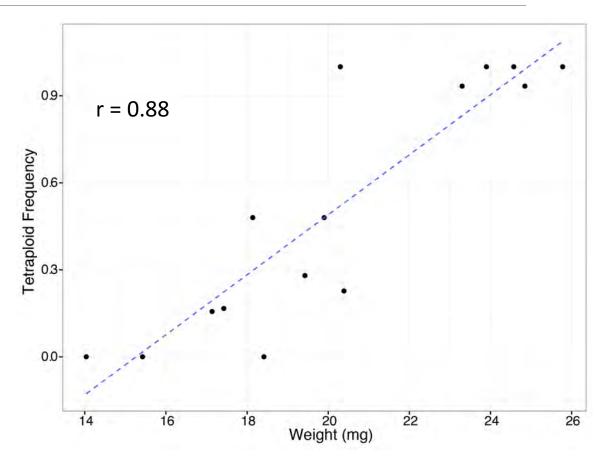

Blue lines = Wyoming big sagebrush

Red lines = basin big sagebrush

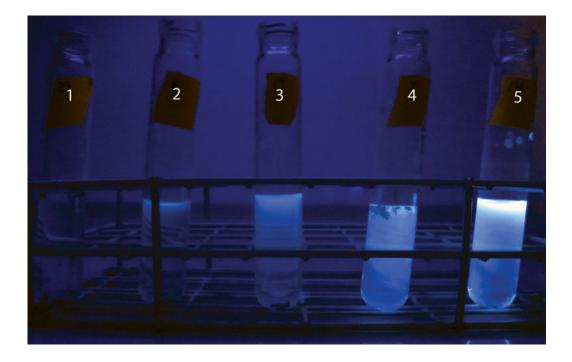
Dashed lines = 99% CIs


Smoothed distribution based on 10 weighs

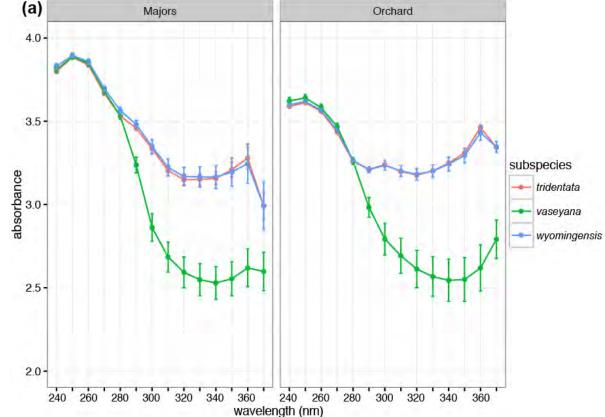
Most seed lots labeled as Wyoming big sagebrush contained only a small fraction of this subspecies and and were largely composed of Basin big sagebrush


Does humidity effect seed weight?

- Tested seed weight at room humidity (20%) and treatments at 33% and 68%
- Treatment for 2 hrs, 4 hrs and 2 days
- No change between room humidity and 33% and < 0.1 mg between 20% and 68% humidity


Cytotype frequency vs. seed weight

- •Relationship between seed weight and cytotype
- Weight > 2 mg / 10 seeds increases the frequency of *wyomingensis*


UV fluorescence to determine ssp vaseyana

- OUV fluorescence by blacklight is diagnostic for mtn big sagebrush
 Caused by coumarin
 - Fluorescence based on visual rating (1 to 5)
 Subjective
- An empirical test for UV fluorescence would be a benefit to seed certification

Absorbance curve using a plate spectrophotometer

- Absorbance curves from >600 plants
 from two common gardens
- Subspecies was previously confirmed by flow cytometry, genetics, etc.
- No overlap between mountain and basin/wyoming spp (95% Cls)
- Wavelength 340 nm showed the greatest difference between subspecies

Mixed model results

Random effects	obs	Variance	SD	P value
Garden	2	0.0012	0.034	0.3
Population × garden	103	0.0142	0.120	2 ^{e-6}
Residual		0.0591	0.2431	
Fixed effects		Estimate	SE	P value
Intercept (tridentata)		3.1873	0.0323	6 ^{e-4}
2x-vaseyana		-0.6822	0.0423	< 2 ^{e-16}
wyomingensis		-0.0246	0.037	0.490

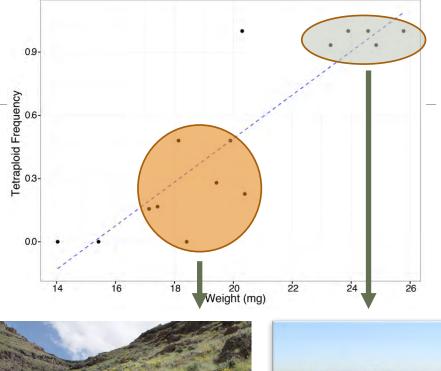
Summary

Environment:

- Effects are small
- These effects do not blur the seed weight differences between Basin and Wyoming big sagebrush
- Or the difference in UV fluorescence between mtn big sagebrush and others

Genetics (subspecies and cytotype differences):

- Seed weight and UV traits are a strongly controlled by genetics
- The most important factor in seed weight appears to be polyploidy and coumarin content for UV


Seed testing

Pure collection of a particular subspecies are generally not a reality. Why try to certify to subspecies?

Determine the composition of Basin and Wyoming plants in seed lots.

Why is this important:

Knowing the proportion of subspecies can help guide where seed lots would be most suitable.

Mixture of Wyoming and Basin

High proportion of Wyoming

Proposed seed testing protocol

Goal: develop a standardize procedure for seed testing that fits within established AOSA seed testing guidelines and assesses the composition of subspecies in each seed lot

The proposed test would include:

- 1. 8 random samples per seed lot, 100 seeds weighed per sample
- 2. Chaff from 8 samples used to determine UV fluorescence with spectrophotometer
- 3. A rating given by the BLM based on Wyoming/basin composition from data supplied by seed labs:
 - Rating A: High Wyoming big sagebrush purity (≥95%) to rating D: ≥ Low wyoming seed (≤15%)
- 4. A similar rating system for mtn. big sagebrush vs. basin ssp on UV absorbance score

Final thoughts: Providing a fighting chance

For better establishment and resiliency:

- Identify the subspecies composition of seed lots
- Use big sagebrush seed lots that are most tailored to the site
- Prioritize restoration efforts to areas that will support sagebrush for decades

Collaborators and funding

Collaborators: Nancy Shaw - RMRS, Matthew Germino - USGS,

Technical assistance: Stephanie Carlson, Hector Ortiz, Alicia Boyd, Tanner Tobiasson, Deidre Jaegar, Alexis Malcomb, Matt Fisk, Erin Denney, Jan Gurr, Utah DNR, BLM, and numerous plant seed collectors, Udall laboratory BYU

Funding: GBNPP, USFS National Fire Plan, Great Basin LCC, CLM Program

The preceding presentation was delivered at the

2017 National Native Seed Conference Washington, D.C. February 13-16, 2017

This and additional presentations available at <u>http://nativeseed.info</u>

