When and Where to Seed?

Effects of Sowing Time and Relative Prairie Quality on First Year Establishment of 23 Native Prairie Species.

Sarah Krock¹ and Sarah Hamman² February 15, 2017 National Native Seed Conference Washington D.C.

History of South Puget Sound Prairies

- Created by glaciers
- Native Americans maintained prairies using fire
- Part of a highly imperiled ecoregion

Figure 1. The focus area of this paper is the Willamette Valley – Puget Trough – Georgia Basin Ecoregion, defined by its distinct climate, geology and native species.

(Hamman et al., 2011)

Importance of South Puget Sound Prairies

- 4 ESA listed species
- Various ecosystem services
- Only about 3% left

Photo: CNLM

Photo: WDFW

Photo: Thurston County

Photo: Thurston County

Role of JBLM Fish & Wildlife

- The program mission is to protect, maintain, and enhance the various ecosystems on the installation to promote native biodiversity and support the military mission.
- ~90,000 acres total
 - ~18,000 acres grassland, prairie, and savanna
 - ~11,000 acres Priority Habitat
- Highest quality and largest remnant native prairie in South Puget Sound

Restoration of South Puget Sound Prairies

Restoration requires huge investments of time and resources (Frischie and Rowe, 2012)

I Plug costs about \$3 (Dunwiddle and Martin, 2015)

- I,000 Seeds cost about \$0.30 (Dunwiddle and Martin, 2015)
- Seeds have extremely low establishment rates, typically <5% (S. Hamman unpublished data)

Research Question

- Does temporal variation of seed sowing or relative prairie quality affect the first year establishment of 23 native prairie species?
- Hypotheses:
 - Earlier (fall) sowings will have higher establishment
 - Higher quality prairie will have higher establishment

Methods-Species Selection

- Used best available science to calculate seed mix
- 23 species
 - 21 genera
 - 13 families
 - 3 functional groups

Scientific Name	Common Name	Family	
Achillea millefolium	yarrow	Asteraceae	
Armeria maritima	sea thrift or sea pink	Plumbaginales	
Balsamorhiza deltoidea	deltoid balsamroot	Asteraceae	
Cerastium arvense	field chickweed	Caryophyllaceae	
Clarkia amoena	farewell to spring	Onagraceae	
Collinsia grandiflora	giant Blue-eyed Mary	Plantaginaceae	
Collinsia parviflora	blue-eyed Mary	Plantaginaceae	
Danthonia californica	California oatgrass	Poaceae	
Eriophyllum lanatum	woolly sunflower or Oregon sunshine	Asteraceae	
Erigeron speciosus	aspen fleabane	Asteraceae	
Festuca roemeri	Roemer's fescue	Poaceae	
Koeleria macrantha	prairie Junegrass	Poaceae	
Lomatium utriculatum	spring gold or common Iomatium	Apiaceae	
Lupinus albicaulis	sicklekeel lupine	Fabaceae	
Lupinus bicolor	miniature lupine	Fabaceae	
Microseris laciniata	cutleaf silverpuffs	Asteraceae	
Plectritis congesta	shortspur seablush	Valerianaceae	
Potentilla gracilis	slender cinquefoil	Rosaceae	
Ranunculus occidentalis	western buttercup	Ranunculaceae	
Sericocarpus rigidus	white-topped aster	Asteraceae	
Sisyrinchium idahoense	Idaho blue-eyed grass	Iridaceae	
Solidago simplex	sticky goldenrod or Mt. Albert goldenrod	Asteraceae	
Viola adunca	Early blue violet	Violaceae	

15 Perennial Forbs

5 Annual Forbs

15 Perennial Forbs

5 Annual Forbs

15 Perennial Forbs

5 Annual Forbs

Methods-Site Selection

Three sites selected in 2014 prescribed burn areas
High Quality Prairie*
Medium Quality Prairie*
Low Quality Prairie*

*Quality is relative

Methods

- Three replicates per prairie
- Hand raking and seed mix sowing
 - September 29, 2014
 - October 29, 2014
 - December 17, 2014
 - March 16, 2015
- Data collection: May-June 2015
- Data analysis:
 - General Linear Model and post-hoc Steel-Dwass multiple comparisons in JMP
 - Shannon's Diversity Index in Excel

8/15 Perennial Forbs

1/5 Annual Forbs

12 of 23 species were found in at least one control plot

Results

Species analyzed independently

Each shows a unique pattern

1/15 Perennial Forbs

4/5 Annual Forbs

4 species influenced by sowing time

3/15 Perennial Forbs

0/5 Annual Forbs

4 species influenced by relative prairie quality

3/15 Perennial Forbs

0/5 Annual Forbs

5 species were not influenced by either sowing time or relative prairie quality

8/15 Perennial Forbs

1/5 Annual Forbs

9 species were excluded from analysis

analysis

8/15 Perennial Forbs

1/5 Annual Forbs

9 species were excluded from analysis, of those, 3 species were not found at all

15 Perennial Forbs

5 Annual Forbs

sowing time or relative

prairie quality

4 species influenced by sowing time

9 species

excluded

analysis, of

3 species were not found at

were

from

those,

all

Results: Species

Seed Sowing Time	Relative Prairie Quality	Both	Neither	Not analyzed- too few plants	Not analyzed- no plants found
Collinsia spp.*	Achillea millefolium**	None	Cerastium arvense	Balsamorhiza deltoidea	Armeria maritima
Lupinus abicaulis*	Danthonia californica**		Festuca roemerii	Clarkia amoena	Solidago simplex
Lupinus bicolor	Eriophyllum Ianatum		Koeleria macrantha	Erigeron speciosus	Viola adunca
Plectritis congesta*	Ranunculus occidentalis**		Microseris Iaciniata	Lomatium utriculatum	
			Sericocarpus rigidus	Potentilla gracilis	
				Sisyrinchium idahoense	
4/22= 18%	18%	0%	23%	27%	14%

* Supports Priority Effects/Neutral Theory (earlier sowing times are better)
 ** Supports Ecological Filtering/Niche Theory (higher quality prairies are better)

Results: Community

Quality (Prairie)

Relativ

- All 22 sown species included in analysis of richness and abundance
- Suggests seed limitation

Conclusions

Does temporal variation of seed sowing or relative prairie quality affect the first year establishment of 23 native prairie species?

- Yes, sowing time affects 4 species
 - earlier (fall) sowing typically has higher establishment
- Yes, relative prairie quality affects 4 different species
 - higher quality prairie typically has higher establishment

Take home messages

When to seed:

- Timing of seed sowing is important
- Try matching seed sowing to natural plant life cycles if possible
- Consider storing seed until following year

Where to seed:

- Match the seed to the site
- Try to be flexible with species/site selection
- Consider using cheap seeds (generalist species and annuals) in low quality sites, expensive seeds in higher quality
- More research is needed, of course!

Acknowledgements

- Center for Natural Lands Management
- JBLM Fish and Wildlife
- The Evergreen State College Masters of Environmental Studies
- Institute for Applied Ecology
- Many others

Key sources

- Dunwiddie, P. W., & Martin, R. A. (2016). Microsites Matter: Improving the Success of Rare Species Reintroductions. *Plos One*, 11(3), e0150417. http://doi.org/10.1371/journal.pone.0150417
- Frischie, S. L., & Rowe, H. I. (2012). Replicating life cycle of early-maturing species in the timing of restoration seeding improves establishment and community diversity. *Restoration Ecology*, 20(2), 188–193. http://doi.org/10.1111/j.1526-100X.2010.00770.x
- Hamman, S. T., Dunwiddie, P. W., Nuckols, J. L., & McKinley, M. (2011). Fire as a Restoration Tool in Pacific Northwest Prairies and Oak Woodlands: Challenges, Successes, and Future Directions. Northwest Science, 85(2), 317–328. http://doi.org/10.3955/046.085.0218
- Martin, L. M., & Wilsey, B. J. (2012). Assembly history alters alpha and beta diversity, exotic-native proportions and functioning of restored prairie plant communities. *Journal of Applied Ecology*, 49(6), 1436–1445. http://doi.org/10.1111/j.1365-2664.2012.02202.x

Questions?

Please feel free to contact me with comments/questions:

Sarah.L.Krock@gmail.com

The preceding presentation was delivered at the

2017 National Native Seed Conference Washington, D.C. February 13-16, 2017

This and additional presentations available at http://nativeseed.info

