NATIVE SEED PROCESSING

Kayla Herriman, Extractory Manager

Is seed cleaning necessary?

- Challenges
 - Availability
 - Time
 - Cost
 - Coordination
- Benefits
 - Known viability
 - Known purity
 - Provides options for sowing
 - Storage potential

What does the extractory provide?

- Extracts, cleans and stores seed
 - Any governmental agency
 - (USFS, BLM, USFWS, NPS, Fed. Hwy., BIA, Tribes)
- Over 3,000 native plant species
- Provides granary & freezer storage
- Arranges for testing & shipping
- Maintains seed inventory database
- Information hub

How is seed processed?

Machines:

- Screens
- Air
- Motion

Seed separation

 Machines exploit the difference in physical properties of target seed and non-target material.

What does processing look like?

Seed with Inert and Non-target Material

What information do we have?

- BSE has records associated with every collection
 - Incoming weight
 - Processing notes
 - Machines used and settings
 - Time spent
 - Final weight
 - In-house testing
 - Certified testing results
 - Final processing reports

How can data help?

Atriplex canescens (ATCA2)

- 10,000 pure live seed (PLS) are required for long-term storage
- 5,000 PLS are needed for nursery grow out.

Average yield data show that approx 7,700 PLS/lb of raw wt. can be expected for ATCA2, so...

15,000 PLS/7,700pls/lb = 1.94 lbs raw material needed

* Average PLS/lb of raw wt. was used in this calculation instead of yield (%) or seeds/lb because ATCA2 typically finishes with a lower than desired percent purity and/or percent fill due to limitations in the extraction process. This is typical of many Atriplex species, conifers, and species producing fleshy fruit. If unsure, make calculations using all methods and take the highest number for field collection.

SHRUBS

GENUS	SPECIES	AVG YIELD (%)	AVG PLS/LB RAW WT	AVG SEED/LB	# OF RECORDS
Ambrosia	dumosa	28	15,373	78,563	43
Artemesia	tridenta ssp. tridentata	6	109,629	2,220,807	47
Artemesia	tridenta ssp. wyomingensis	4	62,887	1,716,151	61
Atriplex	cansecens	28	7,726	55,975	93
Atriplex	confertifolia	26	11,123	102,309	60
Atriplex	polycarpa	5	165,597	1,210,903	35
Cercocarpus	ledifolius	21	7,704	45,054	62
Chrysothamnous	viscidiflorus	5	29,940	889,877	53
Ericameria	nauseosa	8	37,575	621,749	102
Krascheninnikovia	lanata	5	8,787	236,802	48
Larrea	tridentata	18	14,177	116,269	53
Ribes	cereum	6	13,718	308,321	26
Salvia	dorrii	4	5,736	150,149	15
Symphoricarpos	albus	4	2,021	66,786	32
Tetradymia	canescens	3	2,765	116,811	20

Kate Pavich, an SCA Team Member with the BLM Bishop Field Office (California) collecting seed at the Volcanic Tablelands. Photo by Student Conservation Association

Seed Increase: Processing Large Quantities

Elymus elymoides bottlebrush squirreltail

Achnatherum occidentale western needlegrass

- Lomatium cookii
 - Multiple flowers per plant, various heights
 - Seed attached to umbel
 - Seed has a tough wing compared to most Lomatium species

- Asclepias speciosa
 - Timing of harvest
 - Generally good fill
 - Seed has a silky pappus
 - Pappus must be removed
 - Seed is fragile

- Solidago canadensis
 - Seed is very small
 - Has a late bloom window, affecting pollination and seed fill
 - Seed has pappus which must be removed
 - High amount of inerts

- Plagiobotheris spp.
 - Flowers occur along the length of the stem
 - Seed must be harvested before it dehisces
 - Seed is textured
 - Seed size is variable

Seed Increase Yields

	D05 4 \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		DOE A			
BSE Average Yields				BSE Average Yields		
Species	Small Collections	Seed Increase	;	Species	Small Collections	Seed Increase
POSE	52.5%	60.3%	;	SOCA6	8.4%	29.6%
FECA	55.7%	65.1%	I	LOCO8	-	58.1%
ACLE8	48.2%	62.7%	,	ASSP	38.0%	36.4%
BRLA3	59.3%	30.5%	ļ	Plagiobothrys	18.4%	28.9%
DEEL	40.8%	66.9%	ļ	ERLA6	22.5%	12.5%
ACLE9	47.0%	30.8%	J	MOOD	5.6%	6.7%
BRCA5	88.5%	75.0%		ACMI2	10.1%	12.0%

Kayla Herriman 541.383.5481

kherriman@fs.fed.us

Sarah Garvin 541.383.5646 sarahegarvin@fs.fed.us

Bend Seed Extractory 63095 Deschutes Market Road Bend, Oregon 97701

The preceding presentation was delivered at the

2017 National Native Seed Conference

Washington, D.C. February 13-16, 2017

This and additional presentations available at http://nativeseed.info

