Matching seed to site by climate similarity: Tools to prioritize plant materials development and use

Kyle Doherty
Troy Wood
Bradley Butterfield
Seed Transfer Frameworks

- Which seeds are appropriate where?
- Where should we be collecting to diversify our plant materials?
Seed Zones

Johnson et al 2012

Bower et al 2014
Matching seed to site by climate similarity: Techniques to prioritize plant materials development and use in restoration

Kyle D. Doherty, Bradley J. Butterfield, Troy E. Wood

Accepted manuscript online: 23 January 2017 Full publication history

DOI: 10.1002/eap.1505 View/save citation

Cited by: 0 articles Citation tools

Browse Accepted Articles
Accepted, unedited articles published online and citable. The final edited and typeset version of record will appear in future.
Tool #1: Seed Selector
Which seeds to use?

https://seedmapper.shinyapps.io/seed_selector/
App takes ~15 seconds to initialize, please wait.

How would you like to define your area of interest?

Lat/long slider bars

Latitude Extent

<table>
<thead>
<tr>
<th>15</th>
<th>32</th>
<th>42</th>
<th>60</th>
</tr>
</thead>
</table>

Longitude Extent

<table>
<thead>
<tr>
<th>-130</th>
<th>-115</th>
<th>-105</th>
<th>-90</th>
</tr>
</thead>
</table>

id	x	y
custom id 1 | -107.46667 | 35.88333 |
custom id 2 | -108.64655 | 40.11694 |

Now upload a .csv of your accession data (maximum of 50 accessions) in the format pictured above (id, long, lat):

Choose File no file selected

Match Seed to Climate

Download Data

Click above to download underlying rasters and summary data. Note that clicking will open a new tab.
App takes ~15 seconds to initialize, please wait.

How would you like to define your area of interest?

Lat/long slider bars

Latitude Extent

Longitude Extent

Now upload a .csv of your accession data (maximum of 50 accessions) in the format pictured above (id, long, lat):

Choose File no file selected

Match Seed to Climate

Download Data

Click above to download underlying rasters and summary data. Note that clicking will open a new tab.
App takes ~15 seconds to initialize, please wait.

How would you like to define your area of interest?

Lat/long slider bars

Latitude Extent

| 15 | 32 | 42 | 60 |

Longitude Extent

| -130 | -115 | -105 | -90 |

Now upload a .csv of your accession data (maximum of 50 accessions) in the format pictured above (id, long, lat):

<table>
<thead>
<tr>
<th>id</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>custom id 1</td>
<td>-107.46667</td>
<td>35.88333</td>
</tr>
<tr>
<td>custom id 2</td>
<td>-108.64655</td>
<td>40.11694</td>
</tr>
</tbody>
</table>

Choose File no file selected

Match Seed to Climate

Download Data

Click above to download underlying rasters and summary data. Note that clicking will open a new tab.
App takes ~15 seconds to initialize, please wait.

How would you like to define your area of interest?

- Lat/long slider bars

Latitude Extent

Longitude Extent

Now upload a .csv of your accession data (maximum of 50 accessions) in the format pictured above (id, long, lat):

Choose File no file selected

Match Seed to Climate

Download Data

Click above to download underlying rasters and summary data. Note that clicking will open a new tab.
How would you like to define your area of interest?

- Lat/long slider bars
- Spatial polygon
- Raster
- Species Distribution Model
App takes ~15 seconds to initialize, please wait.

How would you like to define your area of interest?

- Lat/long slider bars
- Spatial polygon
- Raster
- Species Distribution Model

Longitude Extent

Now upload a .csv of your accession data (maximum of 50 accessions) in the format pictured above (id, long, lat):

Choose File no file selected

Match Seed to Climate

Download Data

Click above to download underlying rasters and summary data. Note that clicking will open a new tab.
Compress spatial polygon files

Upload to app

four.corners.dbf
four.corners.prj
four.corners.shp
four.corners.shx

four.corners.zip
App takes ~15 seconds to initialize, please wait.

How would you like to define your area of interest?
- Lat/long slider bars

Latitude Extent
- 15
- 32
- 42
- 60

Longitude Extent
- -130
- -115
- -105
- -90

<table>
<thead>
<tr>
<th>id</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>custom id 1</td>
<td>-107.46667</td>
<td>35.88333</td>
</tr>
<tr>
<td>custom id 2</td>
<td>-108.64655</td>
<td>40.11694</td>
</tr>
</tbody>
</table>

Now upload a .csv of your accession data (maximum of 50 accessions) in the format pictured above (id, long, lat):

Choose File no file selected

Match Seed to Climate

Download Data

Click above to download underlying rasters and summary data. Note that clicking will open a new tab.
Our accession data (maximum of 50)

<table>
<thead>
<tr>
<th>id</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>northern az</td>
<td>-108.09938</td>
<td>35.9556217</td>
</tr>
<tr>
<td>southern az</td>
<td>-109.71437</td>
<td>33.8565727</td>
</tr>
<tr>
<td>utah</td>
<td>-109.53858</td>
<td>38.1214428</td>
</tr>
<tr>
<td>colorado</td>
<td>-107.42921</td>
<td>38.1041548</td>
</tr>
<tr>
<td>new mexico</td>
<td>-107.06666</td>
<td>34.836193</td>
</tr>
</tbody>
</table>

Save as .csv
App takes ~15 seconds to initialize, please wait.

How would you like to define your area of interest?
- Lat/long slider bars

Latitude Extent

<table>
<thead>
<tr>
<th>15</th>
<th>32</th>
<th>42</th>
<th>60</th>
</tr>
</thead>
</table>

Longitude Extent

<table>
<thead>
<tr>
<th>-130</th>
<th>-115</th>
<th>-105</th>
<th>-90</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>id</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>custom id 1</td>
<td>-107.46667</td>
<td>35.88333</td>
</tr>
<tr>
<td>custom id 2</td>
<td>-108.64655</td>
<td>40.11694</td>
</tr>
</tbody>
</table>

Now upload a .csv of your accession data (maximum of 50 accessions) in the format pictured above (id, long, lat):

Choose File: no file selected

[Match Seed to Climate]

[Download Data]

Click above to download underlying rasters and summary data. Note that clicking will open a new tab.
Calculations underway, larger extents take longer. Have a coffee, check email, come back in ~3 to 5 mins.
How would you like to define your area of interest?

Spatial polygon

Upload spatial polygon files (.shp, .shx, .prj, and .dbf) compressed into a .zip format:
Choose File four.corners.zip
Upload complete

Now upload a .csv of your accession data (maximum of 50 accessions) in the format pictured above (id, lon, lat):
Choose File example_s.csv
Upload complete

Match Seed to Climate
Download Data

Click above to download underlying rasters and summary data. Note that clicking will open a new tab.

Climate Similarity

-0.60
-0.65
-0.70
-0.75
-0.80
-0.85
-0.90
-0.95
1.00
<table>
<thead>
<tr>
<th>Accession</th>
<th>cell</th>
<th>x</th>
<th>y</th>
<th>MAT</th>
<th>DiurnalRange</th>
<th>TSeasonality</th>
<th>TWettestQtr</th>
<th>MAP</th>
<th>PSeasonality</th>
<th>PWarmestQtr</th>
</tr>
</thead>
<tbody>
<tr>
<td>utah</td>
<td>12602456</td>
<td>-109.5375</td>
<td>38.12083</td>
<td>9.2</td>
<td>15.0</td>
<td>8822</td>
<td>15.8</td>
<td>327</td>
<td>24</td>
<td>82</td>
</tr>
<tr>
<td>colorado</td>
<td>12612309</td>
<td>-107.4292</td>
<td>38.10417</td>
<td>-2.4</td>
<td>14.6</td>
<td>7233</td>
<td>6.6</td>
<td>912</td>
<td>20</td>
<td>224</td>
</tr>
<tr>
<td>northern az</td>
<td>13950987</td>
<td>-111.7792</td>
<td>35.77917</td>
<td>8.8</td>
<td>16.0</td>
<td>7465</td>
<td>18.0</td>
<td>378</td>
<td>35</td>
<td>111</td>
</tr>
<tr>
<td>new mexico</td>
<td>14493953</td>
<td>-107.0625</td>
<td>34.83750</td>
<td>12.8</td>
<td>18.5</td>
<td>8109</td>
<td>22.4</td>
<td>218</td>
<td>60</td>
<td>91</td>
</tr>
<tr>
<td>southern az</td>
<td>15060035</td>
<td>-109.7125</td>
<td>33.85417</td>
<td>6.8</td>
<td>16.4</td>
<td>6451</td>
<td>14.7</td>
<td>682</td>
<td>49</td>
<td>239</td>
</tr>
</tbody>
</table>

Showing 1 to 5 of 5 entries
MAT

Diurnal Range

Temperature Seasonality

Temperature Wettest Qtr.
Tool #2: Climate Partitioner

collection / sampling guidance

https://seedmapper.shinyapps.io/climate_partitioning_app/
How would you like to define your area of interest?

- Spatial polygon

Upload spatial polygon files (.shp, .shx, .prj, and .dbf) compressed into a .zip format:

Choose File four.corners.zip

Upload complete

Specify how many climate partitions you want (1 to 50):

- 10

Partition and Map

Download Data

Click above to download underlying rasters and summary data. Note that clicking will open a new tab.
How would you like to define your area of interest?

- Spatial polygon

Upload spatial polygon files (.shp, .shx, .prj, and .dbf) compressed into a .zip format:

Choose File four.corners.zip

Upload complete

Specify how many climate partitions you want (1 to 50):

10

Partition and Map

Download Data

Click above to download underlying rasters and summary data. Note that clicking will open a new tab.
How would you like to define your area of interest?

- Spatial polygon

Upload spatial polygon files (.shp, .shx, .prj, and .dbf) compressed into a .zip format:
Choose File \ four.corners.zip
Upload complete

Specify how many climate partitions you want (1 to 50):

- 10

Partition and Map

Download Data

Click above to download underlying rasters and summary data. Note that clicking will open a new tab.
How would you like to define your area of interest?

Spatial polygon

Upload spatial polygon files (.shp, .shx, .prj, and .dbf) compressed into a .zip format:

Choose File four.corners.zip

Upload complete

Specify how many climate partitions you want (1 to 50):

10

Partition and Map

Download Data

Click above to download underlying rasters and summary data. Note that clicking will open a new tab.
How would you like to define your area of interest?

Spatial polygon

Specify how many climate partitions you want (1 to 50):

10

Partition and Map

Download Data

Click above to download underlying rasters and summary data. Note that clicking will open a new tab.
<table>
<thead>
<tr>
<th>Climate Center</th>
<th>cell</th>
<th>x</th>
<th>y</th>
<th>MAT</th>
<th>DiurnalRange</th>
<th>TSeasonality</th>
<th>TWettestQtr</th>
<th>MAP</th>
<th>PSeasonality</th>
<th>PWarmestQtr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center 1</td>
<td>11676193</td>
<td>-108.3958</td>
<td>39.72917</td>
<td>5.1</td>
<td>16.4</td>
<td>8515</td>
<td>3.9</td>
<td>443</td>
<td>14</td>
<td>108</td>
</tr>
<tr>
<td>Center 2</td>
<td>12059975</td>
<td>-110.2125</td>
<td>39.06250</td>
<td>9.9</td>
<td>16.4</td>
<td>9640</td>
<td>16.9</td>
<td>213</td>
<td>26</td>
<td>59</td>
</tr>
<tr>
<td>Center 3</td>
<td>12592902</td>
<td>-109.1542</td>
<td>38.13750</td>
<td>7.7</td>
<td>15.4</td>
<td>8624</td>
<td>14.4</td>
<td>377</td>
<td>24</td>
<td>96</td>
</tr>
<tr>
<td>Center 4</td>
<td>12794245</td>
<td>-111.2958</td>
<td>37.78750</td>
<td>11.2</td>
<td>15.1</td>
<td>8820</td>
<td>21.8</td>
<td>195</td>
<td>32</td>
<td>59</td>
</tr>
<tr>
<td>Center 5</td>
<td>13283628</td>
<td>-113.1042</td>
<td>36.93750</td>
<td>12.1</td>
<td>16.0</td>
<td>7845</td>
<td>3.8</td>
<td>352</td>
<td>30</td>
<td>84</td>
</tr>
<tr>
<td>Center 6</td>
<td>13807541</td>
<td>-107.1625</td>
<td>36.02917</td>
<td>17.6</td>
<td>17.6</td>
<td>8245</td>
<td>17.8</td>
<td>310</td>
<td>51</td>
<td>121</td>
</tr>
<tr>
<td>Center 7</td>
<td>14316033</td>
<td>-109.7292</td>
<td>35.14583</td>
<td>11.6</td>
<td>17.3</td>
<td>8155</td>
<td>21.6</td>
<td>252</td>
<td>49</td>
<td>89</td>
</tr>
<tr>
<td>Center 8</td>
<td>14392530</td>
<td>-112.2542</td>
<td>35.01250</td>
<td>12.6</td>
<td>17.1</td>
<td>7268</td>
<td>21.7</td>
<td>416</td>
<td>45</td>
<td>139</td>
</tr>
<tr>
<td>Center 9</td>
<td>14824726</td>
<td>-110.6208</td>
<td>34.26250</td>
<td>8.6</td>
<td>16.6</td>
<td>6970</td>
<td>17.3</td>
<td>579</td>
<td>47</td>
<td>189</td>
</tr>
<tr>
<td>Center 10</td>
<td>14829706</td>
<td>-109.1208</td>
<td>34.25417</td>
<td>8.4</td>
<td>19.1</td>
<td>7006</td>
<td>17.1</td>
<td>363</td>
<td>70</td>
<td>163</td>
</tr>
</tbody>
</table>
Potential Applications

• Seed banking
• Collection for common garden
• Establishing a common garden array
• Establishing transects
Future Directions

• Incorporating soil variables
• Links to available seed database
• Expansion of extent (currently limited to western US)
• Improving stability and performance
• Manipulation of variable weights
Acknowledgements