

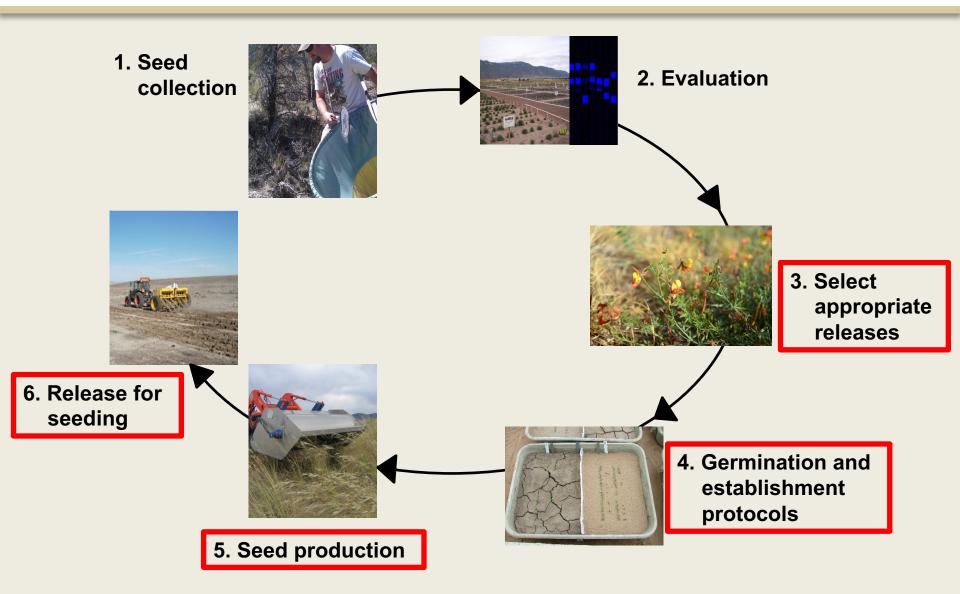
U.S. Department of Agriculture Agricultural Research Service

Forage and Range Research Laboratory

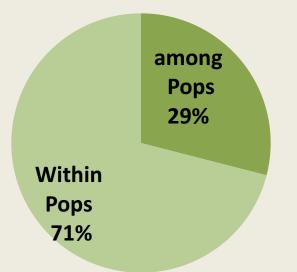
Shaun Bushman Doug Johnson Tom Jones

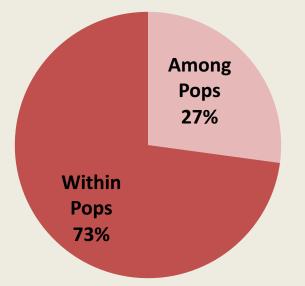
PLANTS FOR THE WEST

Need for North American Legumes


Important for:

- Seeding diversification
- Nitrogen fixation
- Native pollinators
- Wildlife food and habitat


Pipeline for germplasm development


Collection Variation

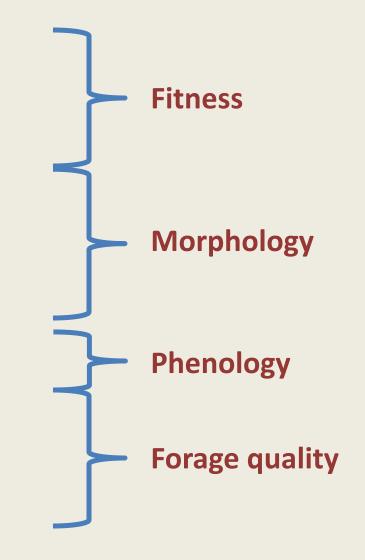
Dalea searlsiae

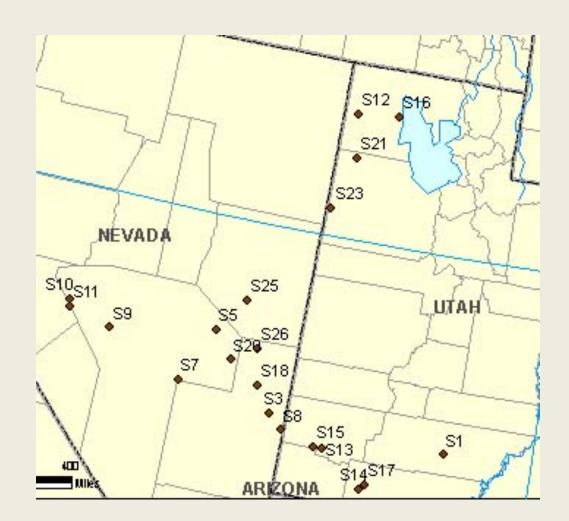
Lotus utahensis

Assessing variation

- *<u>Dalea searlsiae:</u>* • 2 common-gardens.
- 20 collections transplanted.
- RCB design, 6-plant plots, 5 reps.
- Two years post-establishment.

Lotus species:


- 3 common-gardens.
- •19 collections transplanted.
- RCB design, 6-plant plots, 5 reps.
- Two years post-establishment.


Measured Plant Traits

- Seed pod weight
- Dry matter yield
- Survival
- Plant height
- Number of stems
- Foilage diameter
- Flowering date
- Acid detergent fiber
- Neutral detergent fiber
- Crude protein

Dalea searlsiae

Trait Variation – *D. searlsiae*

T	Ducha	Traits	PC1	PC2	
Trait	<i>P</i> value	Eigenvalue	4.28	2.54	
Dry matter yield, g/plot	**	Cumulative proportion	0.63	0.76	
Plant height, cm	**			0.25	
No. of stems	**	Dry matter yield, Hyde Park Dry matter yield, Millville	0.78 0.86	0.25 0.25	
No. of inflorescences	**	Inflorescence weight	0.95	0.16	
Foliage diameter (cm)	**	No. of inflorescences, Millville	0.76	0.10	
ADF%	**	No. of inflorescences, Hyde Park Flowering date	0.61	0.26 -0.26	
NDF%	*	Plant height	0.48	0.45	
Crude protein (CP), %	**	No. of stems	0.46	0.20	
Inflorescence weight, g/plot	**	Foliage diameter Acid detergent fiber	0.69	0.18	١
Flowering date	*	Neutral detergent fiber	0.08	0.94	
1* = <i>P</i> < 0.05, ** = <i>P</i> < 0.01		Crude protein	-0.24	-0.72	L

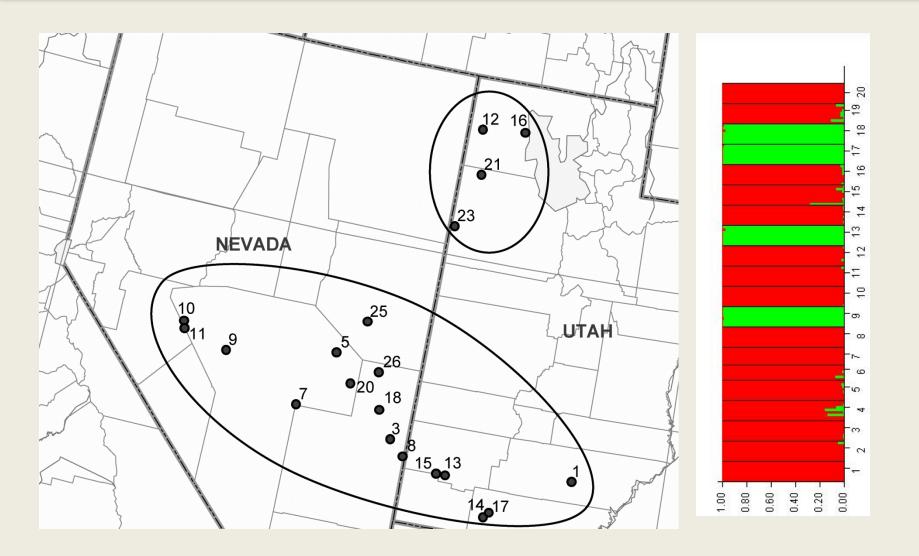
PC1 loadings high for: DMY & seed yield PC2 loadings high for: Forage quality traits PC3 loadings high for: Flowering date

Trait variation and collection site – D. searlsiae

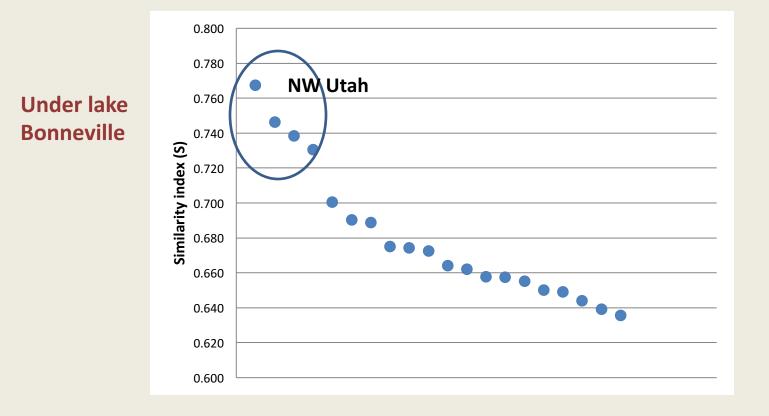
	Elev	Temp	Precip
PC1	0.26 ^{ns1}	0.17 ^{ns}	0.76**
PC2	0.11 ^{ns}	0.15 ^{ns}	0.31 ^{ns}
PC3	-0.50*	0.50*	-0.11 ^{ns}

Recall that PC1 ~ DMY and seed yield.

Precipitation helped to shape the genetic variation for these traits on the landscape.

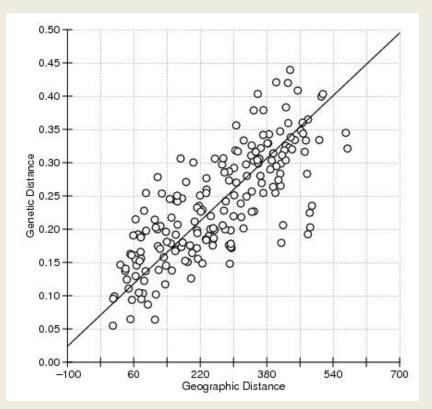


Precipitation structure - D. searlsiae



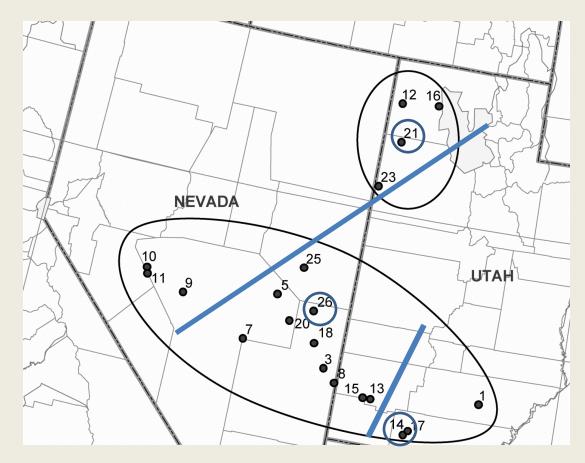
Molecular variation and structure - D. searlsiae

Similarity within collections – D. searlsiae



How molecular variation relates - D. searlsiae

Comparison	r
Genetic vs. Geographic	0.76**
Genetic vs. Phenotypic	0.37**
Genetic vs. Elevation	0.30*
Genetic vs. Precipitation	0.01ns
Genetic vs. MA Temp.	0.16ns


Differences in precip. did not Correspond to genetic differences.

Strong isolation by distance.

Release strategy - D. searlsiae

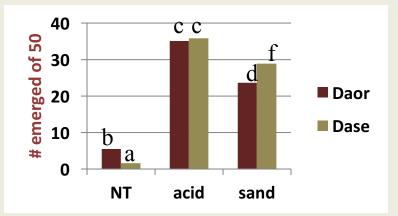
Two common-garden and molecular marker supported releases.

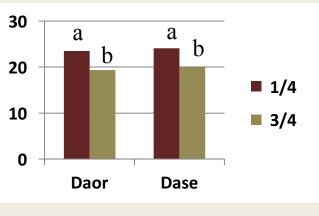
A third was requested because some collections officially reside in the Colorado Plateau.

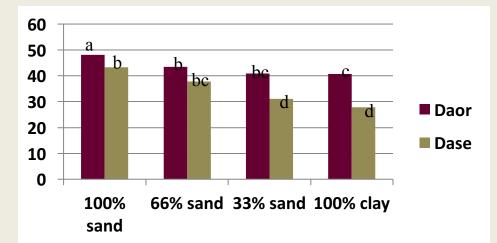
Release strategy - *D. searlsiae*

-	Collection	Infl. weight No. of inf		. No. of infl.	
		(g.plot ⁻¹)			
	Ds-12	29.6 ^{EFG}	32.2 ^{CDEFG}	25.4 ^{BCDE}	
	Ds-16	21.7^G	26.8^{EFG}	8.8 ^G	
*	Ds-21	22.7^G	22.3 ^G	9.8 ^{FG}	
	Ds-23	30.2 ^{DEFG}	27.8 ^{DEFG}	16.3 ^{DEFG}	
	Ds-03	57.6 ^{BCD}	44.0 ^{ABCDE}	32.9 ^{ABC}	
	Ds-05	20.7 ^G	26.1 ^{DEFG}	15.3 ^{EFG}	
	Ds-07	22.1 ^{FG}	23.9 ^{FG}	18.2 ^{DEFG}	
	Ds-08	49.1 ^{BCDE}	45.2 ^{ABCDE}	35.5 ^{AB}	
	Ds-09	32.6 ^{DEFG}	33.8 ^{CDEFG}	20.4 ^{BCDE}	
	Ds-10	33.5 ^{CDEFG}	43.1 ^{ABC DEF}	24.6 ^{BCDE}	
	Ds-11	27.9 ^{EFG}	35.2 ^{CDEFG}	24.1^{BCDE}	
	Ds-13	65.4 ^{AB}	52.3 ^{ABC}	45.0 ^A	
	Ds-15	82.5 ^{AB}	60.5 ^{AB}	45.9 ^A	
	Ds-18	51.3 ^{BCD}	44.6 ^{ABCDE}	35.2 ^{AB}	
	Ds-20	29.5 ^{DEFG}	33.6 ^{C DEFG}	32.6 ^{ABC}	
	Ds-25	46.3 ^{BCDEF}	44.7 ^{ABCDE}	32.5 ^{ABC}	
*	Ds-26	61.3 ^{ABC}	46.7 ^{ABCD}	35.2 ^{AB}	
	Ds-01	20.7^G	29.9^{DEFG}	-	
*	Ds-14	72.7 ^{AB}	42.0 ^{BC DEF}	25.8 ^{BCDE}	
	Ds-17	58.4 ^{BCD}	34.1 ^{CDEFG}	21.1^{CDEF}	

Germination and establishment






Germination and establishment

Acid scarification best, emergence at ~70%.

 $\frac{1}{4}$ " depth better than $\frac{3}{4}$ ".

Sandy soils work best in both species, emergence near 100% for ornata and near 85% for searlsiae.

Seed production

shattering



>150 lbs/ acre

2017 seed requests thus far: 61 lbs 4 entities

Lotus utahensis & wrightii

Trait variation – *L. utahensis*

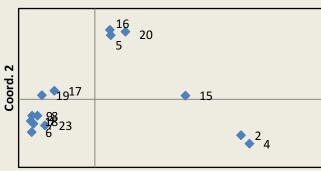
<u>Trait</u>	<u>P value</u>
Dry matter yield, g/plot	* *
Plant height, cm	* *
No. of stems	* *
No. of inflorescences	*
Inflorescence weight, g/plot	* *
Foliage diameter (cm)	* *
ADF %	
NDF%	*
Crude protein (CP), %	**
Flowering date	*

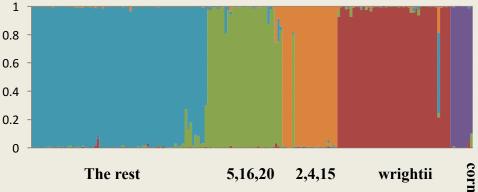
^{1*} = P < 0.05, ^{**} = P < 0.01

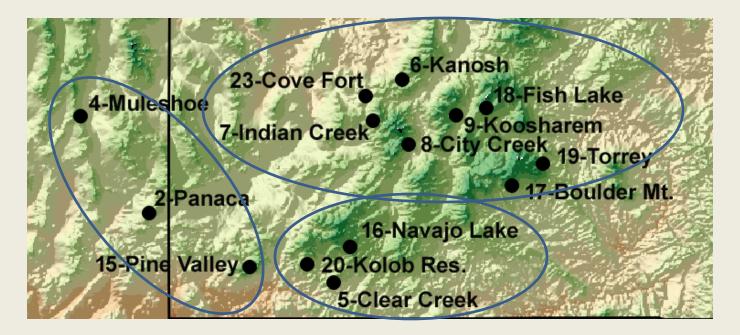
Variable	Factor1	Factor2	Factor3
Eigenvalue	3.33	1.05	0.41
Cumulative	0.67	0.88	0.96
Morphology (C)	-0.48	0.79	0.28
Forage Quality (C)	-0.14	0.89	0.35
Condensed Tannins (D)	-0.11	0.34	0.93
Survival (D)	0.97	-0.10	-0.08
Phenology (C)	0.84	-0.49	-0.13

Factor 1: survival and flowering time Factor 2: DMY, morphology, forage qual. Factor 3: tannins

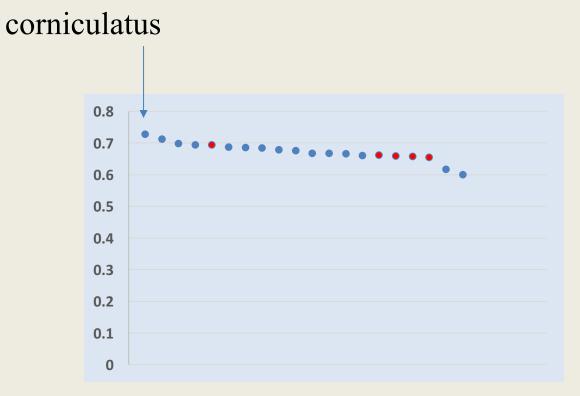
Trait variation and collection site – *L. utahensis*


	phenology & survival	morphology & quality	tannins
	Factor 1 _{LU}	Factor 2 _{LU}	Factor 3 _{LU}
Latitude	0.17 ns	0.08 ns	0.15 ns
Longitude	0.02 ns	-0.01 ns	0.1 ns
Elevation	0.32 ns	0.11 ns	-0.17 ns
Mean Ann Temp	-0.22 ns	-0.17 ns	0.17 ns
Diurnal Temp Range	-0.25 ns	0.18 ns	0.05 ns
Warmest Month High	-0.27 ns	-0.09 ns	0.18 ns
Coldest Month Low	-0.22 ns	-0.21 ns	0.1 ns
Mean Ann Precip	-0.35 ns	0.22 ns	-0.22 ns

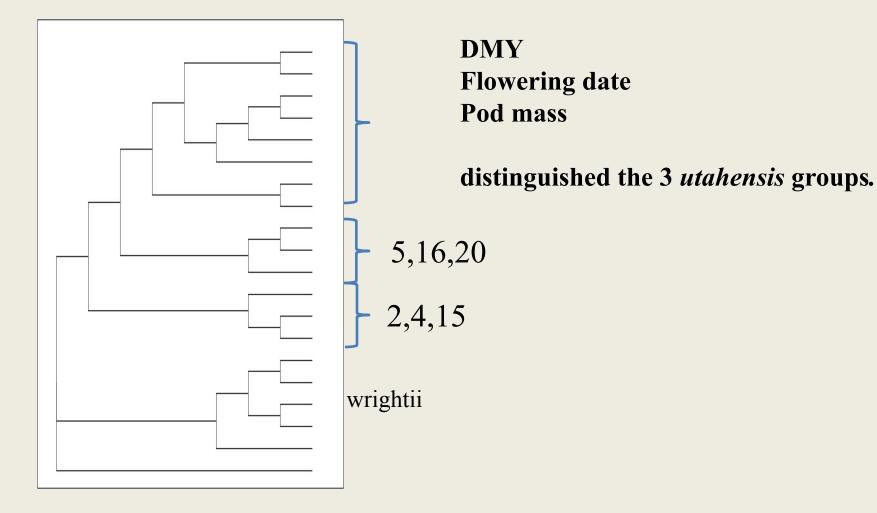

Factors were not even moderately correlated with any environmental characteristic, so no indications of strong local adaptation.


Molecular variation and structure – Lotus

Principal Coordinates (PCoA)

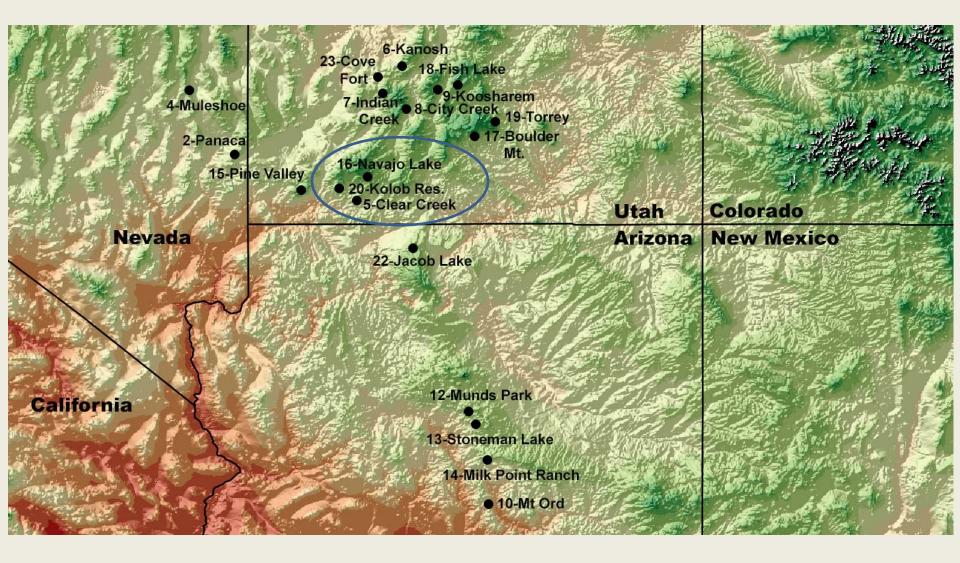


Coord. 1

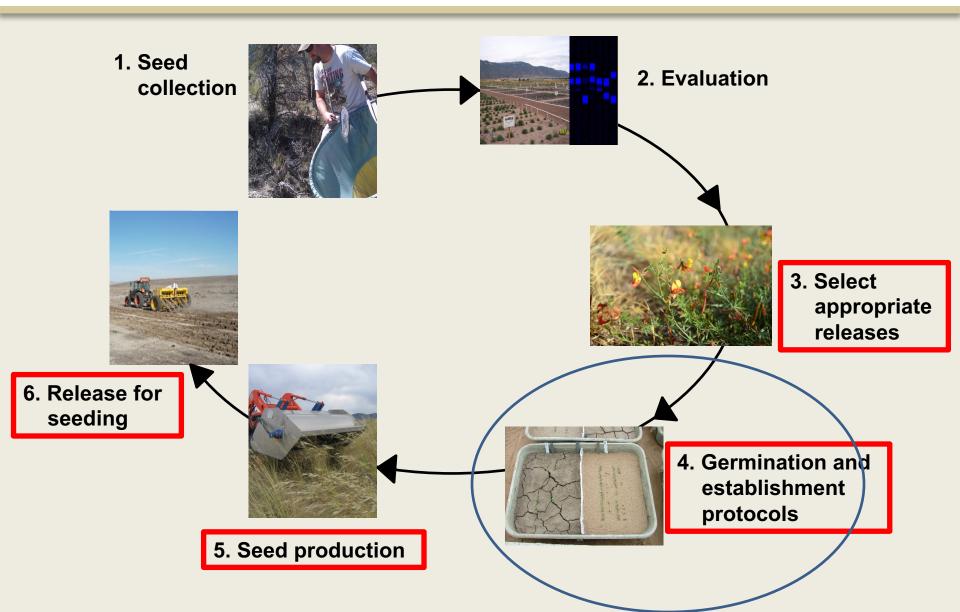

Similarity within collections – Lotus

How molecular variation relates – L. utahensis

Discriminant Analysis: 3 groups within *utahensis*



Seed Pod Weight in Lotus Collections



Release strategy – L. utahensis

Pipeline for germplasm development

Other species

Astragalus filipes

Dalea ornata

Hedysarum boreale

Doug Johnson – 41 years Kevin Connors – 30 years Lisa Michaels Kim Thorsted Jason Stettler Kishor Bhattarai

The preceding presentation was delivered at the

2017 National Native Seed Conference Washington, D.C. February 13-16, 2017

This and additional presentations available at http://nativeseed.info

