MIXING AND MATCHING: **COMPOSITION AND** DIVERSITY OF COMMERCIALLY **AVAILABLE SEED MIXES COMPARED** WITH REMNANT AND RESTORED **TALLGRASS** PRAIRIES

Rebecca S. Barak, Eric V Lonsdorf and Daniel J. Larkin

NATIONAL NATIVE SEED STRATEGY

Action 3.3.3 Support field implementation of restoration tools

Species selection tool for restoration

Draft form

We can't use it right now... BUT

Still lots of room for suggestions!

RESTORATION AND BIODIVERSITY

- Over 50 percent of managers purchase seed for prairie restoration (Rowe 2010)
- Commercial seed mixes are half as diverse as remnant prairies (Harmon-Threatt and Hendrix 2015)

SPECIES SELECTION

Constraints

- Availability
- Cost

Objectives

- Species richness
- Floristic quality (conservatism)
- Pollinator support
- Phylogenetic diversity

1) How do commercially available seed mixes compare to remnant and restored prairies?

1) How do commercially available seed mixes compare to remnant and restored prairies?

Commercially available seed mixes

Community composition of remnant and restored prairies Establishment from field seed mixes

2) HOW DO SEED MIXES BUILT BY COMPUTERS COMPARE TO ACTUAL SEE<u>D MIXES AN</u>D PRAIRIES?

2) HOW DO SEED MIXES BUILT BY COMPUTERS COMPARE TO ACTUAL SEE<u>D MIXES AN</u>D PRAIRIES?

Computer model that incorporates species information, and price to create mixes with desired biodiversity characteristics

PART 1: COMMERCIALLY AVAILABLE MIXES

•Searched for "prairie seed mix," "prairie mix," and "native prairie seed mix"

•Collect information about the company and seed mix (ecosystem service, cost, seed rate, etc.)

•Collected species lists, % composition, seed rate, price for 4-5 mixes per company

PART 1: COMMERCIALLY AVAILABLE MIXES

- •67 mixes, 14 companies
- •215 species from 36 families

REMNANT AND RE PRAIRIES (in Illinois)

Restored prairies

- 19 sites
- Initiated between 1998 and 2012
- Surveyed in 2015

Remnant prairies

- 41 reference sites
- Vegetation surveys: 2001 (Bowles and Jones)

BIODIVERSITY MEASURES

•Species richness

- •Coefficient of conservatism (mean C)
- •Phylogenetic diversity
- •(Bloom time diversity)

Species richness

Commercial seed mixes had significantly lower species richness than remnant or restored prairies

Species richness of seed mixes ranged from 14-91 species (mean = 34.25)

F = 22.97, P < 0.0001

What about

Commercial mixes had lower richness than both remnant and restored prairies (P=0.0002)

Mean C

Coefficient of conservatism 0 – 10 Habitat fidelity, disturbance tolerance

Commercial seed mixes had higher mean C than remnants and restored prairies (P < 0.009).

F = 59.05, P < 0.0001

Higher phylogenetic diversity

Lower phylogenetic diversity

PHYLOGENETIC DIVERSITY

PHYLOGENETIC DIVERSITY Asteracea е Sunflowers Fabacea Legumes Cyperacea е Poaceae Grassse

PHYLOGENETIC DIVERSITY steracea Sunflowers Fabacea е Legumes Cyperacea е Poaceae Grassse

PHYLOGENETIC DIVERSITY

Why is phylogenetic diversity important?

Phylogenetic position is linked to functional traits

Higher phylogenetic diversity in a community = productivity, stability, diversity at higher trophic levels, invasion resistance, facilitation

(Cadotte, Cardinale & Oakley 2008; Davies, Cavender-Bares & Deacon 2011; Cadotte, Dinnage &

Tilman 2012; Dinnage et al. 2012; Li et al. 2015; Lind et

→1.2015)

Higher phylogenetic diversity

Lower phylogenetic diversity

Commercial mixes had lower phylogenetic diversity than remnants (P < 0.0001), but didn't differ from restored

F = 21.05, P < 0.0001

BUT...

These mixes were (probably) not designed to maximize these multiple measures of biodiversity!

AND...

What if you want to meet all these objectives at once?

SPECIES SELECTION

- Constraints
 - Availability
 - Cost
- Objectives
 - Species richness
 - Floristic quality (conservatism)
 - Pollinator support
 - Phylogenetic diversity

How do you deal with these objectives all at once?

COMPUTERS CAN HELP!

- How can we use machine learning to develop seed mixes that meet multiple biodiversity objectives?
- How do these mixes compare with currently available mixes and with prairies themselves?

PART 2: COMPUTER – BUILT MIXES

Decision analysis: "formalization of common sense for decision problems which are too complex for informal use of common sense"

-Keeney (1982)

GENETIC ALGORITHM

Individual = seed mix

"Fitness" = similarity to objective function

Objective function =

Species richness

C value

Bloom time diversity

Phylogenetic diversity

Mix 1
0
0
0
0
1
1
1
0
0
0
1
0
0

Mix 2

0

0

0

0

0

0

1

Mix 3

0

0

0

0

0

0

0

0

WHAT ARE WE "FEEDING" THE GENETIC ALGORITHM?

- •List of ~300 commercially available prairie species
- •Price (Prairie Moon)
- •C values (Swink and Wilhelm 1994)
- •Bloom time variance (Prairie Moon)
- •Phylogenetic distance matrix (from Zanne et al. 2014 phylogenetic tree)

SPECIES SELECTION TOOL

Scenario

- Seeding: 10 lbs / acre
- Candidate species: 301
- Budget: \$400 \$2,200 per acre

Photo: Justin Meissen

RESULTS FROM THE PRELIMINARY MODEL (40 SPECIES)

AcceptedName	Guild	Cost
Helianthus_maximiliani	FORB	\$ 60
Oenothera_biennis	FORB	\$ 90
Astragalus_canadensis	FORB	\$ 90
Zizia_aurea	FORB	\$ 90
Asclepias_syriaca	FORB	\$ 120
Baptisia_alba	FORB	\$ 150
Eupatorium_altissimum	FORB	\$ 150
Allium_stellatum	FORB	\$ 225
Oenothera_rhombipetala	FORB	\$ 225
Zizia_aptera	FORB	\$ 225
Eupatorium_maculatum	FORB	\$ 300
Asclepias_tuberosa	FORB	\$ 450
Arsium muticum	FORB	\$ 600
 Grsium_discolor	FORB	\$ 600
– Helianthus occidentalis	FORB	\$ 600
_ Baptisia bracteata	FORB	\$ 750
Viola sororia	FORB	\$ 3,300
Andropogon gerardii	GRAM	\$ 12
Elymus canadensis	GRAM	\$ 15
Sorghastrum nutans	GRAM	\$ 18
Schizachyrium scoparium	GRAM	\$ 22
Sporobolus_compositus	GRAM	\$ 30
Sporobolus cryptandrus	GRAM	\$ 30
Bromus ciliatus	GRAM	\$ 45
Bromus kalmii	GRAM	\$ 60
 Sporobolus heterolepis	GRAM	\$ 120
Eleocharis geniculata	GRAM	\$ 150
Carex hystericina	GRAM	\$ 150
Juncus interior	GRAM	\$ 225
 Carex crinita	GRAM	\$ 300
 Eleocharis acicularis	GRAM	\$ 450
Carex blanda	GRAM	\$ 450
 Juncus tenuis	GRAM	\$ 600
Juncus nodosus	GRAM	\$ 600
_ Eleocharis compressa	GRAM	\$ 2,100
Amorpha canescens	WOOD	\$ 225
Rosa arkansana	WOOD	\$ 375
 Rosa setigera	WOOD	\$ 450
Chamaecrista fasciculata	WOOD	\$ 30

AcceptedName	Guild	94 12 - 22	Cost	\$400	\$600	\$800
Helianthus_maximiliani	FORB	\$	60	0.160	0.501	0.314
Oenothera_biennis	FORB	\$	90	0.062	0.275	0.196
Astragalus_canadensis	FORB	\$	90	0.063	0.819	0.476
Zizia_aurea	FORB	\$	90	0.121	0.640	0.649
Asclepias_syriaca	FORB	\$	120	0.017	0.069	0.075
Baptisia_alba	FORB	\$	150	0.445	0.444	0,393
Eupatorium_altissimum	FORB	\$	150	0.000	0.020	0.006
Allium_stellatum	FORB	\$	225	0.000	0.063	0.086
Oenothera_rhombipetala	FORB	\$	225	0.000	0.007	0.000
Zizia_aptera	FORB	\$	225	0.082	0.091	0.064
Eupatorium_maculatum	FORB	\$	300	0.113	0.065	0.164
Asclepias_tuberosa	FORB	\$	450	0.000	0.063	0.063
arsium_muticum	FORB	\$	600	0.000	0.000	0.000
Grsium_discolor	FORB	\$	600	0.000	0.000	0.000
Helianthus_occidentalis	FORB	\$	600	0.000	0.002	0.000
Baptisia_bracteata	FORB	\$	750	0.000	0.000	0.000
Viola_sororia	FORB	\$	3,300	0.000	0.000	0.000
Andropogon_gerardii	GRAM	\$	12	1.655	1.291	0.392
Elym us_canadensis	GRAM	\$	15	1,202	1.018	1,486
Sorghastrum_nutans	GRAM	\$	18	1.569	0.643	1.275
Schizachyrium_scoparium	GRAM	\$	22	0.386	0.786	0.669
Sporobolus_compositus	GRAM	\$	30	0.845	1.276	0.004
Sporobolus_crypt andrus	GRAM	\$	30	0.718	0.681	0.289
Bromus_ciliatus	GRAM	\$	45	1.053	0,111	0.407
Bromus_kalmii	GRAM	\$	60	0.644	0.078	1.162
Sporobolus_heterolepis	GRAM	\$	120	0.000	0.003	0.122
Eleocharis_geniculata	GRAM	\$	150	0.001	0.074	0.125
Carex_hystericina	GRAM	\$	150	0.001	0.107	0.477
Juncus_interior	GRAM	\$	225	0.000	0.064	0.370
Carex_crinita	GRAM	\$	300	0.000	0.063	0.063
Eleocharis_acicularis	GRAM	\$	450	0.000	0.001	0.000
Carex_blanda	GRAM	\$	450	0.000	0.012	0.000
Juncus_tenuis	GRAM	\$	600	0.000	0.002	0.000
Juncus_nodosus	GRAM	\$	600	0.000	0.000	0.000
Eleocharis_compressa	GRAM	\$	2,100	0.000	0.000	0.000
Amorpha_canescens	WOOD	\$	225	0.063	0.067	0.063
Rosa_arkansana	WOOD	\$	375	0.000	0.032	0.000
Rosa_setigera	WOOD	\$	450	0.000	0.008	0.192
Chamaecrista_fasciculata	WOOD	\$	30	0.799	0.627	0.418

AcceptedName	Guild	Cost	\$400	\$600	\$800	\$1,000	\$1,200	\$1,400	\$1,600	\$1,800	\$2,000	\$2,200
Helianthus_maximiliani	FORB	\$ 60	0.160	0.501	0.314	0.005	0.935	1.053	0.012	0.872	0.613	0.019
Oenothera_biennis	FORB	\$ 90	0.062	0.275	0.196	0.377	0.069	0.118	0.108	0.001	0.041	0.185
Astragalus_canadensis	FORB	\$ 90	0.063	0.819	0.476	0.084	0.182	0.607	0.175	0.092	0.157	0.082
Zizia_aurea	FORB	\$ 90	0.121	0.640	0.649	0.306	0.084	1.379	0.612	0.236	0.621	0.079
Asclepias_syriaca	FORB	\$ 120	0.017	0.069	0.075	0.022	0.127	0.028	0.138	0.805	0.010	0.024
Baptisia_alba	FORB	\$ 150	0.445	0.444	0,393	0.461	0.219	0,588	0.150	0.072	0.069	0.234
Eupatorium_altissimum	FORB	\$ 150	0.000	0.020	0.006	1,326	0.882	0.345	0.819	0.001	0.005	0.007
Allium_stellatum	FORB	\$ 225	0.000	0.063	0.086	0.227	0.131	0.080	0.075	0.075	0.125	0.078
Oenothera_rhombipetala	FORB	\$ 225	0.000	0.007	0.000	0.031	0.045	0.004	0.001	0.001	0.020	0.708
Zizia_aptera	FORB	\$ 225	0.082	0.091	0.064	0.202	0.163	0.063	0.288	0.136	0.079	0.679
Eupatorium_m aculatum	FORB	\$ 300	0.113	0.065	0.164	0.082	0.506	0.015	0.228	0.003	0.001	0.131
Asclepias_tuberosa	FORB	\$ 450	0.000	0.063	0.063	0.067	0.000	0.065	0.083	0.456	0.172	0.717
Grsium_muticum	FORB	\$ 600	0.000	0.000	0.000	0.003	0.000	0.194	0.265	0.063	0.079	0.065
Grsium_discolor	FORB	\$ 600	0.000	0.000	0.000	0.002	0.000	0.001	0.716	0.361	0.004	0.004
Helianthus_occidentalis	FORB	\$ 600	0.000	0.002	0.000	0.066	0.000	0.313	0.002	0.086	0.066	0.118
Baptisia_bracteata	FORB	\$ 750	0.000	0.000	0.000	0.002	0.000	0.001	0.083	0.063	0.684	0.272
Viola_sororia	FORB	\$ 3,300	0.000	0.000	0.000	0.004	0.000	0.000	0.001	0.000	0.013	0.001
Andropogon_gerardii	GRAM	\$ 12	1.655	1.291	0.392	0.937	0.333	0.010	0.566	0.940	0.025	0.024
Elymus_canadensis	GRAM	\$ 15	1.202	1.018	1.486	0.838	0.248	0.436	0.901	0.002	0.222	1.693
Sorghastrum_nutans	GRAM	\$ 18	1.569	0.643	1.275	0.237	0.410	0.501	0.785	1.009	0.949	0.030
Schizachyrium_scoparium	GRAM	\$ 22	0.386	0,786	0.669	1,238	0.543	0.001	0.024	0.001	0.020	0.017
Sporobolus_compositus	GRAM	\$ 30	0.845	1.276	0.004	0.028	0.388	0.007	0, 292	0.012	0.688	1.084
Sporobolus_cryptandrus	GRAM	\$ 30	0.718	0.681	0.289	0.652	0.269	1.321	0.672	0.071	0.007	0.097
Bromus_ciliatus	GRAM	\$ 45	1.053	0,111	0.407	0.787	0.191	0.144	0.114	0.991	0.573	0.291
Bromus_kalmii	GRAM	\$ 60	0.644	0.078	1.162	0.126	1.782	0.242	0.270	0.094	0.791	0.074
Sporobolus_heterolepis	GRAM	\$ 120	0.000	0.003	0.122	0.286	0.001	0.378	0.074	0.088	0.816	0.114
Eleocharis_geniculata	GRAM	\$ 150	0.001	0.074	0.125	0.372	0.117	0.595	0.182	0.078	0.748	0.597
Carex_hystericina	GRAM	\$ 150	0.001	0.107	0.477	0.151	0.914	0.002	0.731	0.001	0.492	0.262
Juncus_interior	GRAM	\$ 225	0.000	0.064	0.370	0.158	0.091	0.315	0, 288	1.378	0.074	0.130
Carex_crinita	GRAM	\$ 300	0.000	0.063	0.063	0.068	0.152	0.250	0.104	0.152	0.540	0.090
Eleocharis_acicularis	GRAM	\$ 450	0.000	0.001	0.000	0.001	0.000	0.015	0.008	0.001	0.007	0.003
Carex_blanda	GRAM	\$ 450	0.000	0.012	0.000	0.001	0.000	0.000	0.003	0.000	0.001	0.018
Juncus_tenuis	GRAM	\$ 600	0.000	0.002	0.000	0.001	0.259	0.000	0.026	0.000	0.009	0.662
Juncus_nodosus	GRAM	\$ 600	0.000	0.000	0.000	0.003	0.000	0.204	0.063	0.063	0.065	0, 109
Eleocharis_compressa	GRAM	\$ 2,100	0.000	0.000	0.000	0.003	0.000	0.000	0.000	0.000	0.089	0.069
Amorpha_canescens	WOOD	\$ 225	0.063	0.067	0.063	0.200	0.063	0.177	0.091	1.155	0.746	0.653
Rosa_arkansana	WOOD	\$ 375	0.000	0.032	0.000	0.104	0.002	0.080	0.117	0.509	0.064	0.075
Rosa_setigera	WOOD	\$ 450	0.000	0.008	0.192	0.081	0.254	0.077	0.069	0.066	0.093	0.070
Chamaecrista_fasciculata	WOOD	\$ 30	0.799	0.627	0.418	0.459	0.640	0.391	0.865	0.067	0.221	0.435

Photos: USDA Plants

RETURN ON INVESTMENT

Phenology \$400 mix

RETURN ON INVESTMENT

Phenology \$800 mix

RETURN ON INVESTMENT

Phenology \$1,600 mix

Conservation Letters

A journal of the Society for Conservation Biology

LETTER

A Tool for Selecting Plants When Restoring Habitat for Pollinators

Leithen K. M'Gonigle^{1,2}, Neal M. Williams³, Eric Lonsdorf⁴, & Claire Kremen²

¹ Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA

² Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA

³ Department of Entomology and Nematology, University of California, Davis, CA 95616, USA

⁴ Franklin and Marshall College, Lancaster, PA 17604, USA

SPECIES BIC

Germination & Establishment

Not all planted species become part of the realized community

GERMINATION AND ESTABLISHMENT

- •18/56 species didn't establish at all (Hillhouse and Zedler 2011)
- •Restored prairies share only 1/3 of species with their planted seed mix (Grman et al. 2015)
- •Between 25 77 percent (mean: 45 \pm 4.0 %) of planted species found at sites

SYNTHESIS AND NEXT STEPS

Comparing computer designed results to ready-made mixes

Working in additional traits (i.e., establishment!)

Increasing customizability

- Constraints
- Objectives

Creating a (useful) decision-support tool for restoration design

TALK TO ME

Email: BeckyBarak@u.northwestern.edu Twitter: @BeckSamBar

ACKNOWLEDGEMENTS

Gabi Carr, Meghan Kramer, Taran Lichtenberger, Jessica Riebkes, Bob Sherman, Alyssa Wellman-Houde, The Larkin Lab, The Kramer-Havens Lab, The ladies of Plant Community Ecology

Program in Plant Biology and Conservation, Illinois Association of Environmental Professionals, Society for Ecological Restoration Midwest-Great Lakes, NSF DEB-1354426 and REU at Chicago Botanic Garden and Morton Arboretum

QUESTIONS

The preceding presentation was delivered at the

2017 National Native Seed Conference Washington, D.C. February 13-16, 2017

This and additional presentations available at http://nativeseed.info

